﻿ 半穿甲战斗部对舰船目标的侵彻毁伤数值仿真
 舰船科学技术  2023, Vol. 45 Issue (22): 1-7    DOI: 10.3404/j.issn.1672-7649.2023.22.001 PDF

1. 江苏科技大学 船舶与海洋工程学院，江苏 镇江 212100;
2. 江南造船（集团）有限责任公司，上海 201913

Numerical simulation of penetration damage of semi armor piercing warhead to ship target
LI Dong-qin1, ZHANG yu1, LIU Jia-hao2
1. School of Naval Architecture and Ocean Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, China;
2. Jiangnan Shipyard(Group) Co., Ltd., Shanghai 201913, China
Abstract: Based on the Ansys finite element analysis software, the study is conducted to investigate the penetration damage of the semi-armor piercing combatant to the ship target under different conditions. The validity of the finite element simulation is verified, and the damage to the ship is studied under different initial velocities and different angles of attack. Based on the deformation degree of the projectile, the stability of the projectile is judged to meet the requirements and the simulation results are confirmed. Thus, the analysis of the power of the semi-armor-piercing warhead on the ship's target invasion and destruction is completed.
Key words: ship target     semi-armor-piercing warhead     Ansys
0 引　言

1 弹体侵彻液舱的有限元仿真有效性验证 1.1 几何模型

 图 1 侵彻试验装置示意图 Fig. 1 Schematic diagram of the apparatus for the penetration test

 图 2 液舱的有限元模型 Fig. 2 Finite element modeling of liquid tank
1.2 材料参数及本构模型

 ${\sigma _Y} = \left( {A + B{{\mathop {\bar \varepsilon }\nolimits_p }^n}} \right)\left( {1 + C\ln {{\dot \varepsilon }^ * }} \right)\left( {1 - {T^ * }^m} \right)。$ (1)

 $D=\sum \frac{\Delta \varepsilon_{p}}{\varepsilon^{f}}。$ (2)

 $\varepsilon^{f} = \left[D_{1} + D_{2} + \exp \left(D_{3} \sigma^{*}\right)\right]\left[1 + D_{4} \ln \dot{\varepsilon}^{*}\right]\left[1 + D_{5} T^{*}\right]。$ (3)

1.3 侵彻液舱的仿真验证

1）空泡效应对比

 图 3 空泡试验与仿真对比图 Fig. 3 Comparison plot for air bubble test and simulation

2）靶板破坏形态对比

 图 4 靶板的破坏形态对比图 Fig. 4 Comparison of the diagram pattern of the target plate

3）水中弹体速度对比

 图 5 剩余速度仿真与试验对比图 Fig. 5 Comparison plot of simnlation and test for residual velocity
2 弹体对液舱侵彻深度的影响分析 2.1 典型半穿甲战斗部及液舱的模型构建

1）半穿甲战斗部

 图 6 典型半穿甲战斗部的结构简图 Fig. 6 Structural sketch of a typical semi-armor-piercing combat eleent

2）液舱结构

 图 7 舰船舷侧防护液舱示意图 Fig. 7 Schematic diagram of the ship's side protective liquid tanks

 图 8 加强筋板架结构模型图 Fig. 8 Structural model diagram of reinforced rib plate frame

 $V_{J}=S_{H} h_{H}+S_{G} h_{G}。$ (4)

 $H_{J}=\frac{V_{J}}{S_{B}} 。$ (5)

 $H=H_{B}+H_{J} 。$ (6)

 图 9 船体舷侧防护液舱有限元模型图 Fig. 9 Finite element model of hull's outboard protection tank

2.2 不同初速度下的侵彻深度分析

 图 10 不同初速度下的侵彻深度 Fig. 10 Depth of penetration at different initial velocities

 图 11 不同初速度下弹体剩余速度的时历曲线 Fig. 11 Time history curves of the residual velocity of the projectile at different initial velocities

2.3 不同攻角下的侵彻深度分析

 图 12 不同攻角下的侵彻深度 Fig. 12 Depth of penetration at different argles of attack

 图 13 不同攻角下的剩余速度时历曲线 Fig. 13 Residual velocity time history curves at different angles of attack
3 弹体侵彻过程的安定性分析

3.1 安定性理论计算

 $\begin{split} \rho \frac{{\rm{d}} e}{{\rm{d}} t}=\ & \sigma_{x x} \sigma_{x x}+\sigma_{y y} \sigma_{y y}+\sigma_{z z} \sigma_{z z}+2 \sigma_{x y} \sigma_{x y}+\\ & 2 \sigma_{x z} \sigma_{x z}+2 \sigma_{y z} \sigma_{y z}。\end{split}$ (7)

 $\begin{split} \rho \varepsilon=\ & \int\left(\sigma_{x x} \varepsilon_{x x}+\sigma_{y z} \varepsilon_{y z}+\sigma_{z z} \varepsilon_{z z}+2 \sigma_{x y} \varepsilon_{x y} +\right.\\ & \left.2 \sigma_{x z} \varepsilon_{x z}+2 \sigma_{y z} \varepsilon_{y w}\right) {\rm{d }}t。\end{split}$ (8)

 $\rho \mathrm{e}=\int_{z_{0}}^{t_{m}} \sigma(\varepsilon) \mathrm{d} \varepsilon。$ (9)

 $\rho \mathrm{e}=\int_{z_{0}}^{t_{m}} \sigma(\varepsilon) \mathrm{d} \varepsilon < \sigma_{\max} \cdot \varepsilon_{\max}。$ (10)

 $E=m C^{\prime \prime}\left(T-T_{0}\right)=\rho V C^{\prime \prime}\left(T-T_{0}\right)=\rho V e 。$ (11)

 $\rho C^{\prime \prime}\left(T-T_{0}\right)=\rho \mathrm{e}=\int_{\varepsilon_{0}}^{\varepsilon_{\max }} \sigma(\varepsilon) \mathrm{d} \varepsilon<\sigma_{\max } \cdot \varepsilon_{\text {max }}。$ (12)

${T}_{0}=20$ ℃， $\ \rho=1.7\;{\rm{g}}/{\rm{cm}}^{3}$ ${C}^{{'}{'}}=1.372\;{\rm{J}}/\left({\rm{g}}\cdot {\rm{K}}\right)$ 为TNT的比热容。在得知最大应力 ${\sigma }_{\mathrm{m}\mathrm{a}\mathrm{x}}$ 和最大应变 ${\varepsilon }_{\mathrm{m}\mathrm{a}\mathrm{x}}$ 情况下，可计算出装药的最大升温。TNT的爆点温度为240℃，若计算温度大于240℃时，弹体内部装药由于压缩变形过大，内能升高导致弹体提前爆炸，安定性不符合要求；反之则满足要求。

3.2 弹体的最大应力应变分析

 图 14 不同初速度下的弹体应变云图 Fig. 14 Strain map of the projectile at different initial velocities

 图 15 不同攻角下的弹体应变云图 Fig. 15 Strain maps of the projectlle at different angles of attack

 图 16 TNT的应力应变曲线 Fig. 16 Stress-strain curve of TNT

 图 17 最大应力应变时的侵彻位置 Fig. 17 Position of penetration at maximum stress-strain
4 结　语

 [1] 拾路. 弹体撞击作用下液舱结构的毁伤失效研究[D]. 镇江: 江苏科技大学, 2019. [2] 辛春亮, 薛再清, 涂建. 有限元分析常用材料参数手册[M]. 北京: 机械工业出版社, 2021. [3] 杨砚世. 侵爆战斗部对航母毁伤评估方法研究[D]. 南京: 南京理工大学, 2015. [4] 黄阳洋, 王志军, 赵鹏铎, 等. 射弹参数对侵彻防护液舱效果的影响研究[J]. 兵器装备工程学报, 2017, 38(12): 90-92+97. DOI:10.11809/scbgxb2017.12.021 [5] 熊飞, 石全, 朱艮春, 等. 半穿甲战斗部侵彻运动加筋板数值模拟[J]. 火力与指挥控制, 2015, 40(8): 74-77. DOI:10.3969/j.issn.1002-0640.2015.08.017 [6] 陈刚, 陈忠富, 陶俊林, 等. 45钢动态塑性本构参量与验证[J]. 爆炸与冲击, 2005(5): 69-74. DOI:10.3321/j.issn:1001-1455.2005.05.010 [7] 魏刚, 张伟, 邓云飞. 基于J-C模型的45钢本构参数识别及验证[J]. 振动与冲击, 2019, 38(5): 173-178. DOI:10.13465/j.cnki.jvs.2019.05.025 [8] CZYRYCA E J. Advances in high strength Steel technology for naval hull construction[J]. Key Engineering Materials, 1993, 84−85: 491−520 [9] 焦志刚, 郭秋萍, 刘宗超. 半穿甲弹侵彻过程中装药安定性数值分析[J]. 弹箭与制导学报, 2012, 32(2): 92-94. DOI:10.3969/j.issn.1673-9728.2012.02.025 [10] 王伟力, 黄雪峰, 杨雨潼. 半穿甲战斗部侵彻过程中装药安定性研究[J]. 海军航空工程学院学报, 2010, 25(1): 79-82. [11] 廖学燕, 沈兆武, 姚保学, 等. 含铝纤维复合炸药的能量输出和力学强度[J]. 爆炸与冲击, 2010, 30(4): 424-428. DOI:10.11883/1001-1455(2010)04-0424-05