﻿ 基于蚁群算法的舰船逆变控制器功率PID控制研究
 舰船科学技术  2023, Vol. 45 Issue (20): 142-145    DOI: 10.3404/j.issn.1672-7649.2023.20.026 PDF

Research on power PID control of ship inverter controller based on ant colony algorithm
GONG Xu
Department of Marine Engineering, Jiangsu Shipping College, Nantong 226010, China
Abstract: Power PID control method of ship inverter controller based on ant colony algorithm is studied, and the power control results of ship inverter are used to improve the operational reliability of ship power system. According to the power balance state of the inverter during steady operation of the ship power system, the expected maximum power output of the inverter is determined. The expected output power of the ship inverter is set as the input of the PID controller, and the actual output power of the inverter is set as the output of the PID controller. The power overshot, power rise time and power response time are selected as the performance indicators. The objective function of the PID controller is optimized by the ant colony algorithm, and the parameters corresponding to the optimal path of the ant colony algorithm are set. As the parameter optimization result of PID controller, the power control result of ship inverter is output. The experimental results show that the inverter power is controlled by this method, and the output power of the inverter can effectively track the maximum power point, and meet the demand of efficient transmission of electric energy in the ship power system.
Key words: ant colony algorithm     ship power system     inverter     output power     PID controller     optimal path
0 引　言

1 舰船逆变控制器功率PID控制 1.1 舰船逆变器的功率分析

 ${P_{\max }} = \frac{3}{2}{\left( {\frac{{2P_{}^ * }}{{3{U_{}}}}} \right)^2} + P_{}^ * 。$ (1)

 $P_{}^ * = \frac{3}{4}U\left( {\sqrt {U_{}^2 + \frac{8}{3}{P_{\max }}} - U} \right) 。$ (2)

1.2 舰船逆变器的功率PID控制器

 $u\left( t \right) = {K_p}e\left( t \right) + \frac{1}{{{T_i}}}\int_0^t e \left( t \right){\rm{d}}t + {T_d}\frac{{{\rm{d}}e\left( t \right)}}{{{\rm{d}}t}}。$ (3)

PID控制器的控制参数整定结果，决定了PID控制器的舰船逆变器功率控制性能。舰船逆变器的期望输出功率已知，采样周期已知，因此仅需要确定PID控制器的控制参数，即可获取具有最佳舰船逆变控制器功率控制性能的PID控制器。

1.3 蚁群算法优化PID的逆变器功率控制

 $p_{ij}^k = \frac{{\tau _{ij}^\alpha \left( t \right)\eta _{ij}^\beta \left( t \right)}}{{\sum {\tau _{ij}^\alpha \left( t \right)\eta _{ij}^\beta \left( t \right)} }} 。$ (4)

 $\tau _{ij}^{}\left( {t + n} \right) = \left( {1 - \rho } \right)\tau _{ij}^{}\left( t \right) + \Delta \tau _{ij}^{} 。$ (5)

 $F = {\omega _1}\left( {\frac{\sigma }{{{\sigma _0}}}} \right) + {\omega _2}\left( {\frac{{{t_r}}}{{{t_{r0}}}}} \right) + {\omega _3}\left( {\frac{{{t_s}}}{{{t_{s0}}}}} \right) 。$ (6)

 图 1 蚁群算法优化PID控制器流程图 Fig. 1 Flow chart of PID controller optimized by ant colony algorithm

2 结果与分析

 图 2 光照强度变化 Fig. 2 Changes in light intensity

 图 3 逆变器网侧交流电压 Fig. 3 AC voltage at the inverter side

 图 4 逆变器有功功率输出结果 Fig. 4 Inverter active power output results

 图 5 逆变器无功功率输出结果 Fig. 5 Inverter reactive power output results

3 结　语

 [1] 刘春玲, 王明, 张瑾. 四旋翼ESO的RBF神经网络PID控制器研究[J]. 电光与控制, 2021, 28(9): 84-88+93. [2] 欧阳子路, 王鸿东, 王检耀, 等. 基于智能控制的船舶水动力导数敏感性分析方法[J]. 中国舰船研究, 2021, 16(4): 116-124. [3] 袁绍军, 郭金智, 尹兆磊, 等. 单相逆变器双环+时滞的复合控制方法研究[J]. 电力电子技术, 2022, 56(8): 32-35+40. [4] 高鑫, 杨青, 张绥彬, 等. 基于改进蚁群算法的新型AVC策略[J]. 电网与清洁能源, 2022, 38(10): 60-68. [5] 刘陈瑞扬, 付立军, 胡祺, 等. 柴发机组与逆变器并联运行暂稳态功率均分控制方法[J]. 电机与控制学报, 2022, 26(3): 10-21. [6] 宋武健, 王国玲, 罗成汉, 等. 船舶氢储直流电力推进系统控制器转速环带宽设计方法[J]. 中国舰船研究, 2023, 18(01): 260-268.