﻿ 狭水道条件下的大型船舶操纵安全优化方法
 舰船科学技术  2023, Vol. 45 Issue (20): 58-61    DOI: 10.3404/j.issn.1672-7649.2023.20.010 PDF

1. 江苏海事职业技术学院 航海技术学院，江苏 南京 211170;
2. 长江引航中心南京引航站，江苏 南京 211170;
3. 长江南京航道工程局 航道维护中心，江苏 南京 211170

Safety optimization method for maneuvering large ships in narrow channel
GUO Ruo-xin1, QIAN Jing2, SUN Xiao-feng3
1. Jiangsu Maritime Institute Navigation College, Nanjing 211170, China;
2. Nanjing Pilot Station of Yangtze River Pilotage Center, Nanjing 211170, China;
3. Changjiang Nanjing Sea-route Bureau, Nanjing 211170, China
Abstract: In order to improve the handling safety of large ships in narrow waterways, an optimization method for handling safety of large ships in narrow waterways is proposed. According to the appendage coordinate axis that follows the movement and rotation of large ships, the plane motion structure of large ships is constructed. Set the built black box model as the dynamic system of operation safety optimization, and build the evaluation index of the black box model of large ships. Considering the parameters such as wave force and environmental information under the condition of narrow waterway, the state variables of large ships under the condition of narrow waterway are analyzed to realize the safety optimization of large ships. The experimental results show that this method can effectively optimize the handling safety of large ships in narrow waterways and make large ships sail reliably under ideal navigation parameters.
Key words: narrow channel conditions     large ships     control safety optimization     propeller thrust     black box model     differential evolution algorithm
0 引　言

1 大型船舶操纵安全优化方法 1.1 大型船舶运动结构构建

 $\left\{ {\begin{array}{*{20}{l}} {X = m\left( {u - v \times r} \right)} ，\\ {Y = m\left( {v - u \times r} \right)} ，\\ {N = I \times r + M \times \left( {v + u \times r} \right)} 。\end{array}} \right.$ (1)

1.2 大型船舶的黑箱模型评价指标构建

 ${X_s} = \frac{{{x_s}\left( t \right) \times u\left( t \right) \times {x_s}\left( {t + 1} \right) \times \lambda }}{{\left( {X,Y,N} \right)}}。$ (2)

 $K = \gamma \times \left( {{x_i} - {x_j}} \right) \times {X_s}。$ (3)

 $R = K \times \frac{{\displaystyle\sum\limits_{i = 1}^n {{{\left( {{y_i} - {{\hat y}_i}} \right)}^2}} }}{{\displaystyle\sum\limits_{i = 1}^n {{{\left( {{y_i} - \bar y} \right)}^2}} }} 。$ (4)

1.3 大型船舶在狭水道条件下状态变量

 $x\left( t \right) = R \times \left[ {\alpha \left( t \right),\beta \left( t \right),\chi \left( t \right)} \right] 。$ (5)

2 实验分析

 图 1 大型船舶速度模拟结果 Fig. 1 Speed simulation results of large ships

 图 2 大型船舶附加质量力变化 Fig. 2 Changes of additional mass force of large ships

 图 3 大型船舶输出有功功率变化 Fig. 3 Changes of output active power of large ships

 图 4 大型船舶螺旋桨转速变化 Fig. 4 Change of propeller speed of large ships

3 结　语

 [1] 武善平, 黄炎焱, 陈天德. 改进A~*算法的水面舰船静态航路规划[J]. 计算机工程与应用, 2022, 58(23): 307-315. WU Shanping, HUANG Yanyan, CHEN Tiande. Static route planning of surface ships based on improved A*algorithm[J]. Computer Engineering and Applications, 2022, 58(23): 307-315. DOI:10.3778/j.issn.1002-8331.2106-0025 [2] 梅中华, 巩庆涛, 郭艳利, 等. 面向应用的大型水面舰船结构发展趋势与对策[J]. 船舶工程, 2022, 44(6): 35-38+146. MEI Zhonghua, GONG Qingtao, GUO Yanli, et al. Development trend and countermeasure of large surface warship structure for application[J]. Ship Engineering, 2022, 44(6): 35-38+146. [3] 蒋通, 崔良中, 刘立国, 等. 基于聚类分析和Att-Bi-LSTM的舰船航迹预测方法[J]. 计算机仿真, 2022, 39(8): 1-5+322. JIANG Tong, CUI Liangzhong, LIU Liguo, et al. The method of ship track prediction based on cluster analysis and att-bi-LSTM[J]. Computer Simulation, 2022, 39(8): 1-5+322. DOI:10.3969/j.issn.1006-9348.2022.08.001 [4] 马琳, 谢新连, 王昊泽. 基于改进证据推理法的舰船综合操纵性能评价方法[J]. 中国舰船研究, 2023, 18(3): 94-103. MA Lin, XIE Xinlian, WANG Haoze. Comprehensive evaluation method of maneuvering performance for naval ships based on improved evidential reasoning approach[J]. Chinese Journal of Ship Research, 2023, 18(3): 94-103. [5] 张艳云, 欧阳子路, 邹早建. 基于ν-支持向量机的波浪中船舶操纵运动辨识建模[J]. 船舶力学, 2023, 27(5): 637-645. ZHANG Yanyun, OUYANG Zilu, ZHOU Zaojian. Identification modeling of ship maneuvering motion in waves based on ν-support vector machine[J]. Journal of Ship Mechanics, 2023, 27(5): 637-645. DOI:10.3969/j.issn.1007-7294.2023.05.003 [6] 曾道辉, 蔡成涛. 基于修正辅助变量法的船舶操纵响应模型辨识[J]. 哈尔滨工程大学学报, 2023, 44(2): 161-171. CENG Daohui, CAI Chengtao. Identification of the ship maneuvering response model based on recursive refined instrumental variable least-squares[J]. Journal of Harbin Engineering University, 2023, 44(2): 161-171. DOI:10.11990/jheu.202204034 [7] 王立鹏, 张智, 马山, 等. 考虑船舶操纵性约束的改进遗传算法航线规划[J]. 哈尔滨工程大学学报, 2021, 42(7): 1056-1062. WANG Lipeng, ZHANG Zhi, MA Shan, et al. Improved genetic algorithm-based ship route planning considering ship maneuverability constraints[J]. Journal of Harbin Engineering University, 2021, 42(7): 1056-1062. DOI:10.11990/jheu.201912062