﻿ 基于无线传感器网络的舱室内船员位置估计算法
 舰船科学技术  2023, Vol. 45 Issue (19): 197-200    DOI: 10.3404/j.issn.1672-7649.2023.19.038 PDF

Design of estimation algorithm for ship indoor crew position based on wireless sensor network
ZHANG Di, WANG Xue-li
School of Physics and Intelligent Manufacturing Engineering, Chifeng University, Chifeng 024000, China
Abstract: In order to ensure the personal safety of personnel inside the ship and enhance the management ability of the ship during navigation, a wireless sensor network-based algorithm for estimating the position of crew members inside the ship is designed. Place a reference node at a fixed position inside the ship's interior, and also place a positioning node on the crew inside the ship. The positioning request of the positioning node is sent to the reference node. When the positioning node receives the signal strength of the reference node's own coordinates, the receiving information strength indicates that the positioning algorithm measures the distance between the reference node and the positioning node. Gaussian filtering is used to denoise the measurement results. Calculate the specific position of the positioning node through the trilateral positioning algorithm, and achieve the estimation of the indoor crew position on the ship. The experimental results show that this algorithm can effectively remove severely distorted RSSI data, accurately estimate the actual position of the crew, measure the effective distance between the reference node and the positioning node, and have high penetration and ranging accuracy.
Key words: wireless sensor network     ship interior     crew position     location estimation     RSSI     filter denoising
0 引　言

1 船舶舱室内船员位置估计算法 1.1 基于无线传感器网络的位置估计架构

 图 1 舱室内船员位置估计架构 Fig. 1 Architecture for estimating the position of indoor crew members on ships

1）网关节点。具体工作内容是控制舱室内的整个网络并起到协调的作用，依据无线的方式接收和发送数据并构建网络，是信息传输的重要途径。该节点也被称作协调器，是构建舱室内无线传感器网络的重要组成部分。

2）参考节点。具体工作内容是辅助网关节点的工作，并将自身的位置坐标和信号强度发送给定位节点，起到中转网络的作用，也是辅助定位节点进入舱室内网络的桥梁，该节点也被称作路由器。

3）定位节点。该节点也被称作终端节点。该节点集成一些传感器节点，并依据需求设置特别功能。该节点将放置于舱室内船员的身上，可以在参考节点能够测到的区域内进行活动，同时，将该节点的定位请求持续传送给参考节点，当该节点收到参考节点的坐标位置和信号强度时，便可以采用定位算法获取舱室内船员的准确位置。该节点的工作流程如图2所示。

 图 2 定位节点的工作流程 Fig. 2 Workflow for locating nodes

 $PL(d) = PL({d_0}) + 10n\lg \left(\frac{d}{{{d_0}}}\right) + S。$ (1)

 $RS S I = {P_t} - PL(d) ，$ (2)

 $RS S I = {P_t} - RL({d_0}) - 10n\lg \left(\frac{d}{{{d_0}}}\right) - S 。$ (3)

1.4 基于三边定位算法的舱室内船员位置估计

 图 3 三边定位法原理图 Fig. 3 Schematic diagram of trilateral positioning method

 图 4 舱室内二维空间的节点分布图 Fig. 4 Node distribution diagram of two-dimensional indoor space of ships
 $\left\{ \begin{gathered} \sqrt {{{(x - {x_a})}^2} + {{(y - {y_a})}^2}} = {d_1} ，\\ \sqrt {{{(x - {x_b})}^2} + {{(y - {y_b})}^2}} = {d_2}，\\ \sqrt {{{(x - {x_c})}^2} + {{(y - {y_c})}^2}} = {d_3}。\\ \end{gathered} \right.$ (4)

 $\begin{split} \left[ \begin{gathered} x \\ y \\ \end{gathered} \right] = &{\left[ \begin{gathered} 2({x_a} - {x_c})\mathop {}\nolimits_{}^{} 2({y_a} - {y_c}) \\ 2({x_b} - {x_c})\mathop {}\nolimits_{}^{} 2({y_b} - {y_c}) \\ \end{gathered} \right]^{ - 1}}\times \\ & \left[ \begin{gathered} x_a^2 - x_c^2 + y_a^2 - y_c^2 + d_3^2 - d_1^2 \\ x_b^2 - x_c^2 + y_b^2 - y_c^2 + d_3^2 - d_2^2 \\ \end{gathered} \right] 。\end{split}$ (5)

2 实验结果分析

 图 5 对RSSI数据处理的前后对比 Fig. 5 Comparison of RSSI data processing before and after

3 结　语

 [1] 周海飞, 芦翔, 胡春芬. 基于红外无线传感器网络的移动目标定位[J]. 电子器件, 2022, 45(6): 1476-1482. ZHOU Hai-fei, LU Xiang, HU Chun-fen. Mobile target location based on infrared wireless sensor networks[J]. Electronic Devices, 2022, 45(6): 1476-1482. DOI:10.3969/j.issn.1005-9490.2022.06.035 [2] 高美凤, 尹持俊. 基于UAV的无线传感器网络加权质心定位算法[J]. 传感技术学报, 2021, 34(4): 539−545. GAO Mei-feng, YIN Chi-jun. Weighted centroid location algorithm for wireless sensor networks based on UAVS [J]. Journal of Sensing Technology, 2019, 34(4): 539−545. [3] 崔焕庆, 张娜, 罗汉江. 基于改进鸽群算法的无线传感器网络定位方法[J]. 传感技术学报, 2022, 35(3): 399-404. CUI Huan-qing, ZHANG Na, LUO Han-jiang. Wireless sensor network location method based on improved pigeon swarm algorithm[J]. Journal of Sensing Technology, 2022, 35(3): 399-404. [4] 张沛朋, 李冬锋. 基于MCMC的无线传感器网络目标定位算法[J]. 计算机工程与设计, 2022, 43(7): 1864-1871. ZHANG Peipeng, LI Dongfeng. Target Location Algorithm for wireless sensor networks based on MCMC[J]. Computer Engineering and Design, 2022, 43(7): 1864-1871. DOI:10.16208/j.issn1000-7024.2022.07.009 [5] 方省, 罗引, 曹家, 等. 基于高斯混合模型的无线传感器网络定位算法[J]. 吉林大学学报(理学版), 2022, 60(3): 713−720. FANG Sheng, LUO Yin, CAO Jia , et al. Wireless sensor network location algorithm based on Gaussian mixture model [J]. Journal of Jilin University (Science Edition), 2022, 60(3): 713−720.