﻿ 贝叶斯统计模型在舰船机电自动控制系统中的应用
 舰船科学技术  2023, Vol. 45 Issue (19): 151-154    DOI: 10.3404/j.issn.1672-7649.2023.19.027 PDF

Application of bayesian statistical model in ship electromechanical automatic control system
XIONG Ou
Department of Mathematics and Physics Teaching, Chongqing College of Mobile Communication, Chongqing 401520, China
Abstract: In order to improve the effectiveness of ship electromechanical automatic control, a Bayesian statistical model of ship electromechanical automatic control system was designed. The on-site equipment layer collects operational data of ship electromechanical equipment, uses Bayesian statistical models to detect outliers within the operational data, and removes outliers. The programmable logic controller determines the electromechanical control vector based on the operational data of electromechanical equipment. The user operation terminal generates ship electromechanical control instructions based on the control vector, which are transmitted to the on-site equipment layer through the transmission layer. The execution mechanism automatically controls the electromechanical equipment according to the control instructions. The experiment proves that the system can effectively collect operational data of ship electromechanical equipment and achieve outlier detection. This system can accurately and automatically control the ship's electromechanical system.
Key words: Bayesian statistical model     ship electromechanical     automatic control     monitoring nodes     programmable logic
0 引　言

1 舰船机电自动控制系统

 图 1 舰船机电设备自动控制系统总体结构 Fig. 1 Overall structure of the automatic control system for ship mechanical and electrical equipment

1）现场设备层利用监控节点采集舰船机电设备的运行数据，并经由CAN总线传输至处理层。同时该层在接收舰船机电设备控制指令后，利用执行机构依据控制指令，自动控制机电设备。

2）处理层中机电设备异常值检测模块，利用贝叶斯统计模型，检测舰船机电设备运行数据采集结果内的异常值，并剔除异常值，避免因输入异常值，而影响机电设备自动控制精度。

3）传输层通过网络接口，将异常值剔除后的舰船机电设备运行数据，传输至应用层，同时还负责将控制指令，传输至现场设备层。

4）应用层中PLC控制器依据舰船机电设备运行数据，确定舰船机电设备控制向量；用户操作终端依据控制向量，生成舰船机电设备控制指令；通过监控机实时监测舰船机电设备自动控制过程。

1.1 舰船机电设备运行数据采集的监控节点

 图 2 监控节点的硬件框图 Fig. 2 Hardware block diagram of monitoring nodes

1.2 舰船机电设备运行数据异常值检测

 $\left\{ \begin{gathered} Z = {\boldsymbol{A}}X + {\boldsymbol{\varDelta}} ，\\ {\boldsymbol{\varDelta}} \sim {N_n}\left( {0,\frac{{\sigma _0^2}}{{\boldsymbol{W}}}} \right) 。\\ \end{gathered} \right.$ (1)

 $\hat X = {\left( {{{\boldsymbol{A}}^{\rm{T}}}{\boldsymbol{WA}}} \right)^{ - 1}} {{\boldsymbol{A}}^{\rm{T}}}{\boldsymbol{W}}\left( {Z - \lambda } \right)。$ (2)

1.3 舰船机电的PLC控制器

 图 3 PLC控制器的舰船机电自动控制过程 Fig. 3 Automatic control process of ship electromechanical with PLC controller

2 结果与分析

 图 4 主机转速采集结果 Fig. 4 Host speed collection results

 图 5 本文系统的舰船机电自动控制结果 Fig. 5 Results of ship electromechanical automatic control in this system
3 结　语

 [1] 杨植, 严新平, 欧阳武, 等. 船舶轮缘推进装置驱动电机及控制方法研究进展[J]. 电工技术学报, 2022, 37(12): 2949-2960. YANG Zhi, YAN Xin-ping, OUYANG Wu, et al. A review of electric motor and control technology for rim-driven thruster[J]. Transactions of China Electro technical Society, 2022, 37(12): 2949-2960. [2] 郭燚, 王超, 解文祥. 用于船舶永磁推进电机驱动控制的MMC模型预测方法[J]. 中国舰船研究, 2021, 16(4): 179-189,198. GUO Yi, WANG Chao, XIE Wen-xiang. MMC model predictive control method applied to ship permanent magnet propulsion motor drive[J]. Chinese Journal of Ship Research, 2021, 16(4): 179-189,198. DOI:10.19693/j.issn.1673-3185.02001 [3] 张庆飞, 赵镜红, 严思念, 等. 船用五相感应电机模型预测电流控制研究[J]. 微特电机, 2023, 51(1): 45-49. ZHANG Qing-fei, ZHAO Jing-hong, YAN Si-nian, et al. Research on model predictive current control of marine five-phase induction motor[J]. Small & Special Electrical Machines, 2023, 51(1): 45-49. DOI:10.3969/j.issn.1004-7018.2023.01.009 [4] 白洪芬, 余波, 顾伟. 电力推进船舶电机无模型滑模控制策略研究[J]. 船舶工程, 2022, 44(10): 92-99. BAI Hong-fen, YU Bo, GU Wei. Research on model-free sliding mode control strategy of electric propulsion ship motor[J]. Ship Engineering, 2022, 44(10): 92-99. DOI:10.13788/j.cnki.cbgc.2022.10.15 [5] 孙志豪, 黄文焘, 卫卫, 等. 船舶大功率电力推进虚拟同步电机控制方法[J]. 电力自动化设备, 2022, 42(11): 106-113. SUN Zhi-hao, HUANG Wen-tao, WEI Wei, et al. Virtual synchronous machine-based control method for high power electric propulsion of ship[J]. Electric Power Automation Equipment, 2022, 42(11): 106-113. DOI:10.16081/j.epae.202204016 [6] 赵远英, 徐登可, 冉庆. 泊松逆高斯回归模型的贝叶斯统计推断[J]. 应用数学, 2021, 34(2): 253-261. ZHAO Yuan-ying, XU Deng-ke, RAN Qing. Bayesian statistical inferences for poisson inverse gaussian regression models[J]. Mathematica Applicata, 2021, 34(2): 253-261. DOI:10.13642/j.cnki.42-1184/o1.2021.02.001