﻿ 水下Halbach永磁电机噪声特性及减振降噪研究
 舰船科学技术  2023, Vol. 45 Issue (19): 137-142    DOI: 10.3404/j.issn.1672-7649.2023.19.024 PDF

Research on noise characteristics and vibration reduction of underwater halbach permanent magnet motor
ZHANG Chi, QIAO Ming-zhong, WU Bo
College of Electrical Engineering, Naval Engineering University, Wuhan 430000, China
Abstract: As a new type of drainage equipment or underwater propeller, the machine pump integrated device composed of permanent magnet motor with Halbach structure and pump blade has many advantages and wide application prospects. In order to reduce the noise generated by the motor running in the machine pump integrated device and improve the acoustic stealth performance of the ship, this paper analyzes the noise characteristics of the motor in the fluid, uses the finite element software to simulate the noise rule generated by the motor running underwater, and uses the motor thermal load theory to propose the motor optimization method of increasing the stator yoke thickness. The research results show that increasing the thickness of the motor stator yoke can effectively reduce the vibration noise generated by the Halbach structure permanent magnet motor during operation.
Key words: permanent magnet motor     vibration and noise     finite element     motor optimization
0 引　言

 图 1 机泵一体化装置 Fig. 1 Physical drawing of machine pump integrated device

1 流体中电机噪声特性 1.1 电机噪声理论分析

 $y = \sum\limits_{n = 0}^\infty {{y_{{n}}}} = \sum\limits_{n = 0}^\infty {{A_{{n}}}} \cos \left( {{\omega _{\text{n}}}t - n\varphi } \right)。$ (1)

 $I = 2\rho c{ {\text{π}} ^2}f_n^2A_n^2{I_{cn}}。$ (2)

 ${I_{{{cn}}}} = \frac{I}{{{I_{{p}}}}} = \frac{2}{{ {\text{π}} \left( {k{R_0}} \right)\left[ {J_{{n}}^{\prime 2}\left( {k{R_0}} \right) + Y_{{n}}^{\prime 2}\left( {k{R_0}} \right)} \right]}} 。$ (3)

 $W = 2\rho c{ {\text{π}} ^2}f_{{n}}^2A_{{n}}^2\left( {2 {\text{π}} {R_0}L} \right){I_{{{cn}}}}。$ (4)

 $I = \frac{{{P^2}}}{{{Z_0}}} 。$ (5)

 ${L_P} = 20\log \frac{P}{{{P_0}}} 。$ (6)

 ${L_I} = 10\log \frac{I}{{{I_0}}}。$ (7)

 ${L_w} = 10\log \frac{W}{{{W_0}}} 。$ (8)

 ${L_P} = 10\lg \sum\limits_{i = 1}^n 1 {0^{{L_{P{{i}}}}/10}} 。$ (9)
1.2 不同介质噪声传播差异

 $\left| P \right| = \frac{{\omega {u_0}\rho }}{{ {\text{π}} kR}}\frac{{2L}}{{H_n^\prime (f)}}。$ (10)

 $\gamma = \frac{{{P_{{\text{air}}}}}}{{{P_{{\text{water}}}}}} = \frac{{{\rho _{{\text{air}}}}{c_{{\text{air}}}}}}{{{\rho _{{\text{water}}}}{c_{{\text{water}}}}}}\frac{{H_n^\prime \left( {{f_{{\text{air}}}}} \right)}}{{H_n^\prime ({f_{{\text{water}}}})}} = {\gamma _Z}{\gamma _H} 。$ (11)

 $\Delta \gamma = 20\lg {P_{{\text{air}}}} - 20\lg {P_{{\text{water}}}} = 20\lg \left( {\gamma /{p_{ref}}} \right) 。$ (12)

 图 2 不同力波作用下的Δγ值 Fig. 2 Under the action of different force waves Δγ value

2 海水与空气中噪声仿真对比 2.1 噪声体声网格的建立

 图 3 电机二维仿真模型 Fig. 3 Two dimensional simulation model of motor

 图 4 Halbach电机振动噪声仿真流程图 Fig. 4 Flow chart of Halbach motor vibration and noise simulation
2.2 仿真对比分析

 图 5 空气和海水中电机噪声声压级频谱对比图 Fig. 5 Spectrum comparison of sound pressure level of motor noise in air and sea water

 图 6 2种介质在噪声峰值时的声压分布 Fig. 6 Sound pressure distribution of two media at noise peak

3 Halbach结构电机噪声抑制

3.1 基于电机热负荷理论优化分析

 $Q{\text{ = }}AJ 。$ (13)

 $A=\frac{{2mN{I_{{N}}}}}{{{\text{π}} {D_i}}}。$ (14)

 $J = \frac{{{I_1}}}{{a{\text{π}} \left[ {{N_{{\text{t}}1}}{{\left( {\dfrac{{{d_1}}}{2}} \right)}^2} + {N_{{\text{t}}2}}{{\left( {\dfrac{{{d_2}}}{2}} \right)}^2}} \right]}} 。$ (15)

 图 7 电机定子槽模型 Fig. 7 Motor stator slot model
3.2 优化电机气隙磁密分析

 图 8 电机负载气隙磁密波形 Fig. 8 Air gap flux density waveform of motor under load

 图 9 电机优化前后气隙磁密对比 Fig. 9 Comparison of air gap magnetic density before and after motor optimization

 $THD = \sqrt {\sum\limits_{n = 2}^H {{{\left(\frac{{{G_n}}}{{{G_1}}}\right)}^2}} } 。$ (16)

3.3 优化电机噪声仿真分析

 图 10 电机噪声频谱曲线对比图 Fig. 10 Comparison diagram of motor noise spectrum curve

1）在电机噪声声压级最大的频率段附近时，电机噪声由优化前的91.98 Hz降低到优化后的85.68 Hz；

2）优化前后电机均在333.3 Hz的整数倍附近产生较大的噪声，且优化后的电机在不同频率段的噪声声压级均有不同程度的降低；

3）电机的主要噪声点产生在低频段较多，4 000 Hz后的噪声声压级有明显的下降。

4 结　语

 [1] 马伟明. 舰船综合电力系统中的机电能量转换技术[J] . 电气工程学报, 2015, 10(4): 3-10. MA Weiming Electromechanical energy conversion technology in ship integrated power system [J]. Journal of electrical Engineering, 2015, 10 (4): 3-10. [2] 高海波. 吊舱式电力推进装置的发展及应用[J] . 武汉理工大学学报（交通科学及工程版）, 2006(2): 77–80. GAO Haibo Development and application of pod type electric propulsion device [J]. Journal of Wuhan University of Technology (Traffic Science and Engineering Edition), 2006(2): 77–80. [3] LENA Bergh. Electrical systems in pod propulsion[D]. Chalmers University of Technogy, 2007. [4] 陈亚听, 黄友朋. 电力推进的好处[J] . 船电技术, 2001, (5): 48–50. CHEN Ya-Ting, HUANG You-Peng. Advantages of electric propulsion [J]. Marine electric technology, 2001, (5): 48–50. [5] JORDAN H. Gerauscharme Elektromotoren [M] . Verlag W. Girardet. Essen, 1950. [6] ELLISON A J, YANG S J. Calculation of acoustic power radiated by electric machine[J]. Acoustics, 1971(25): 28-34. [7] ZHU Z Q. Instantaneous magnetic field distributíon in brushless permanent magnet DC motors, Part 1: open-circuít field[J]. IEEE Transactions on Magnetics, 1993, 29(1): 124-135. DOI:10.1109/20.195557 [8] ZHU Z Q, HOWE D. Instantaneous magnetic field distríbution in brushless permanent magnet DC motors, Part II: armature-reaction field[J]. IEEE Transactions on Magnetics, 1993, 29(1): 136-142. DOI:10.1109/20.195558 [9] ZHU Z Q, HOWE D. Instantaneous magnetic field distribution in brushless permanent magnet DC motors, Part III: effect of stator slotting[J]. IEEE Transactions on Magnetics, 1993, 29(1): 143-151. DOI:10.1109/20.195559 [10] ZHU Z Q, HOWE D. Instantaneous magnetic field distribution in brushless permanent magnet DC motors, Part IV: magnetic field on load[J]. IEEE Transactions on Magnetics, 1993, 29(1): 152-158. DOI:10.1109/20.195560 [11] YU H, TIAN L, ZHANG G. Transfer path analysis of structural vibration on propulsion motor[C]// IEEE Magnetics Conference, 2015. [12] 赵旭. 水下航行器推进电机设计及减振降噪研究[D] . 沈阳: 沈阳工业大学, 2016.