﻿ 极地气垫破冰船发动机余热利用数值研究
 舰船科学技术  2023, Vol. 45 Issue (19): 124-129    DOI: 10.3404/j.issn.1672-7649.2023.19.022 PDF

1. 上海交通大学 船舶海洋与建筑工程学院, 上海 200240;
2. 中国船舶及海洋工程设计研究院, 上海 200011

Numerical research on waste heat reclaim of polar air-cushion ice-breaker engine
FU Hui-ping1, HU Yun-bo2, PENG Lei2
1. School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiaotong University, Shanghai 200240, China;
2. Marine Design and Research Institute of China, Shanghai 200011, China
Abstract: In order to effectively utilize the engine waste heat of polar air-cushion ice-breaker, it is necessary to study the corresponding numerical simulation methods. Based on the mixture multiphase model of computational fluid dynamics, the numerical simulation methods of flow field and temperature field related to heat transfer are studied for the internal or external flow pertaining to the cabin and centrifugal fans. It is shown that heating is beneficial to improve the propulsive efficiencies of the centrifugal fans; It can increase the average temperature in the cabin by 41.13 ℃ and the average temperature in the fan by 34.16 ℃, which has a significant effect on the increase of the average temperature in the cabin and the centrifugal fans of the polar air-cushion ice breaker. The effectiveness of the mixture multiphase model for numerically solving such heat exchange problems has been verified.
Key words: polar air-cushion ice-breaker     waste heat reclaim     computational fluid dynamics     heat transfer     numerical simulation
0 引　言

 图 1 平台布置 Fig. 1 Platform layout

1 控制方程

1.1 连续方程

 $\frac{{\partial {\rho _m}}}{{\partial t}} + \nabla \cdot \left( {{\rho _m}{{\vec u}_m}} \right) = 0，$ (1)

 ${\vec u_m} = \frac{{\displaystyle\sum\nolimits_{k = 1}^n {{\alpha _k}{\rho _k}{{\vec u}_k}} }}{{{\rho _m}}} ，$ (2)
 ${\rho _m} = \sum\limits_{k = 1}^n {{\alpha _k}{\rho _k}}。$ (3)

1.2 动量方程

 $\begin{split} & \frac{\partial }{{\partial t}}\left( {{\rho _m}{{\vec u}_m}} \right) + \nabla \cdot \left( {{\rho _m}{{\vec u}_m}{{\vec u}_m}} \right) = - \nabla {\rho _m} + \\ & \nabla \left[ {{\mu _m}\left( {\nabla {{\vec u}_m} + \nabla \vec u_m^T} \right) + {\rho _m}g + \overrightarrow F + \nabla \left( {\sum\limits_{k = 1}^n {{\alpha _k}{\rho _k}{{\vec u}_{dr,k}}{{\vec u}_{dr,k}}} } \right)} \right]。\end{split}$ (4)

 ${\mu _m} = \sum\limits_{k = 1}^n {{\alpha _k}{\mu _k}}，$ (5)
 ${\vec u_{dr,k}} = {\vec u_k} - {\vec u_m}。$ (6)
1.3 能量方程

 $\frac{{\partial ({\rho _m}{T_m})}}{{\partial t}} + \nabla \left({\rho _m}{\vec u_m}{T_m}\right) = \nabla \left(\frac{{{k_m}}}{{{c_p}_m}}\nabla {T_m}\right) + {S_T}。$ (7)

2 舱　室 2.1 几何建模与网格划分

 图 2 舱室几何建模及网格划分 Fig. 2 Geometric modeling and mesh generation of cabin

 图 3 舱室计算模型 Fig. 3 Computation model of cabin
2.2 计算与分析

 图 4 舱室计算收敛历程 Fig. 4 Computation convergence history of cabin

 图 5 舱室计算结果 Fig. 5 Computation results of cabin

3 垫升风机 3.1 几何建模与网格划分

 图 6 垫升风机几何建模及计算域 Fig. 6 Geometric modeling and computation domain of centrifugal fan

3.2 计算与分析

 $N_s = \frac{{M {\text π} n}}{{30}}。$ (8)

 ${\eta _t} = \frac{{H{Q_V}}}{{{N_s}}}。$ (9)

 图 7 风机计算收敛历程 Fig. 7 Computation convergence history of fan

 图 8 两个截面上的温度分布 Fig. 8 Temperature Distributions on 2 sections

 图 9 热相粒子轨迹图 Fig. 9 Trajectories of hot phase particles

4 结　语

1）发动机余热可使舱室中心温度上升39.85 ℃；使舱室中央截面温度上升41.58 ℃；使舱室平均温度上升41.13 ℃。

2）发动机余热可使出口截面温度上升37.29 ℃；使风机内平均温度上升34.16 ℃。

 [1] 高嵩, 张俊, 张进. 极地气垫破冰/运输平台破冰机理和关键技术[J]. 船舶, 2018(6): 117-122. GAO S, ZHANG J, ZHANG J. Key technology and ice-breaking mechanism of polar air-cushion ice-breaking/transportation platform[J]. Ship & Boat, 2018(6): 117-122. DOI:10.19423/j.cnki.31-1561/u.2018.06.117 [2] JOSE S S, CHIDAMBARAM R K. Thermal comfort optimization in an electric vehicle[J]. International Journal of Heat and Technology, 2021, 39(6): 1957-1965. DOI:10.18280/ijht.390634 [3] 陈岩松. 高热流密度数据机房新型散热技术研究[D]. 长春: 吉林建筑大学市政与环境工程学院, 2019. [4] 柴婷, 毛佳炜, 陆懿东. 基于CFD模拟的船舶空调舱室热舒适性研究[J]. 船舶与海洋工程, 2015, 31(2): 37-42. CHAI T, MAO J W, LU Y D. Research on thermal comfort of ship air conditioning cabin based on CFD[J]. Naval Architecture and Ocean Engineering, 2015, 31(2): 37-42. DOI:10.14056/j.cnki.naoe.2015.02.008 [5] 周俊男. 舰船舱室气流组织的数值与实验研究[D]. 哈尔滨: 哈尔滨工程大学, 2012. [6] 程东梅. 船舶居住舱室气流组织数值仿真研究[D]. 哈尔滨: 哈尔滨工程大学, 2007. [7] 王露. 离心风机流动特性研究[D]. 兰州: 兰州交通大学. 2018. [8] ONMA P, CHANTRASMI T. Comparison of two methods to determine fan performance curves using computational fluid dynamics[C]//Proceedings of the 8th TSME-International Conference on Mechanical Engineering (TSME-ICoME 2017). 2018: 1−8.