﻿ 海上漂浮式光伏阵列单浮体结构设计
 舰船科学技术  2023, Vol. 45 Issue (19): 104-110    DOI: 10.3404/j.issn.1672-7649.2023.19.019 PDF

Design and optimization of single-module structure of offshore FPV system
ZHANG Jing-fei, YI Ling, GUO Pan
School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, China
Abstract: At present, the single-floating structure of the FPV power station built on the still water cannot fully adapt to the complex and changeable offshore environment. Therefore, three pontoon-type floating structures are proposed for the FPV array system for offshore hydrodynamics. Taking the 1×5 array FPV system as the research object, the large-scale general software AQWA is used to conduct hydrodynamic research on the 1×5 array FPV system, the stability of the three floating structures under different working conditions and the force of the end cables are analyzed. The results show that the single-buoy structure buoy is suitable for installation on the water surface with less wind load, and the multi-buoy structure buoy is more suitable for installation in the complex and changeable offshore environment. The research results provide an important theoretical basis for the design of future FPV array systems.
Key words: FPV single component structure     cable force analysis     stability analysis     AQWA
0 引　言

 图 1 FPV电站示意图 Fig. 1 Schematic diagram of FPV power station
1 基本理论

FPV结构在受到风、流、浪的环境荷载下相对于平衡位置作摇摆运动，由牛顿运动定律可得到风、浪、流共同作用下的运动方程[10]为：

 $\left({\boldsymbol{M}}+{\boldsymbol{m}}\right)x+{\boldsymbol{\mu}} \dot{x}+kx={F}_{z}。$ (1)

 $\begin{array}{c}{F}_{f}={C}_{1}{C}_{2}{P}_{f}S，\end{array}$ (2)
 $\begin{array}{c}{P}_{f}=0.613{{v}_{f}}^{2}。\end{array}$ (3)

FPV结构在复杂多变的海上环境中，主要受到波浪载荷的作用力。本文采用势流理论方法对漂浮光伏浮体进行波浪载荷计算，假定为理想流体、不可压缩且忽略表面张力、运动是无旋的、存在速度势、水深为常数且水中没有流[10]

 $\begin{array}{c}\nabla\varPhi \left(x,y,z,t\right)=0，\end{array}$ (4)

 $\begin{array}{c}\varPhi \left(x,y,z,t\right)={{\varPhi }}^{I}\left(x,y,z,t\right)+{{\varPhi }}^{D}\left(x,y,z,t\right)+{{\varPhi }}^{R}\left(x,y,z,t\right) 。\end{array}$ (5)

FPV结构湿表面的水动压力 $P$ 、波浪力 ${F}_{W}$ 、力矩 ${M}_{W}$ 可以表示为：

 $\begin{array}{c}P=-\rho \dfrac{\partial \mathrm{\Phi }\left(x,y,z,t\right)}{\partial t} ，\end{array}$ (6)
 $\begin{array}{c}{F}_{W}=\displaystyle\iint _{{S}_{B}}^{}-P\overrightarrow{\boldsymbol{n}}{\rm{d}}s ，\end{array}$ (7)
 $\begin{array}{c}{M}_{W}=\displaystyle\iint_{{S}_{B}}^{}-P\left(\overrightarrow{\boldsymbol{r}}\times \overrightarrow{\boldsymbol{n}}\right){\rm{d}}s ，\end{array}$ (8)

 $\begin{array}{c}{F}_{c}=\displaystyle\int_{0}^{h}\frac{1}{2}\rho {C}_{d}{S}{'}{v}_{c}{\rm{d}}z 。\end{array}$ (9)

2 模型的建立与计算 2.1 基础平台参数

FPV结构主要是由上部的太阳能光伏板和下部的浮体部分组成，太阳能光伏板主要用于光伏发电，浮体部分主要在水面上起到一定的支撑作用。太阳能光伏板上所受到的风荷载通常是FPV结构设计的重要考虑因素。风荷载对于 FPV结构的稳定性尤为重要。如图2所示，FPV结构位于海面或湖泊之上。浮体通过浮力支撑太阳能光伏板，浮力与太阳能光伏板自身的重量相平衡。当风荷载从太阳能光伏板前侧流入时，升力作用在太阳能光伏板的向下方向上，为防止FPV结构因升力而下沉，应增加浮体的浮力。相反，如果风荷载在太阳能光伏板后侧流入时，升力作用在太阳能电池板的向上方向，为了防止FPV结构被升力倾覆，应增加浮体或太阳能电池板的重量。然而，风向无法确定或预测，随时都在变化。为了抵抗不同方向的风荷载，采用两侧呈小角度的安装形式，如图3所示。为了增加整个PFV光伏结构的浮力，结构上部为三角形桁架，两侧呈5°角度安放太阳能光伏板。为了增大排开水液体的量，下部浮体部分采用空腔钢结构体。

 图 2 原始型FPV光伏组件结构示意图 Fig. 2 Schematic diagram of the original FPV module structure

 图 3 新式FPV组件结构示意图 Fig. 3 Schematic diagram of the new FPV module structure

 图 4 FPV阵列系统基础平台模型示意图 Fig. 4 Schematic diagram of the basic platform model of the FPV array system

 图 5 1×5阵列FPV系统示意图 Fig. 5 Schematic diagram of 1×5 array FPV system
2.2 三种浮体结构的提出

 图 6 浮体结构示意图 Fig. 6 Schematic diagram of floating body structure

2.3 锚固系统参数

2.4 环境工况

3 结果与分析 3.1 网格收敛性分析

 图 7 结构网格划分示意图 Fig. 7 Schematic diagram of structural meshing

 图 8 横荡二阶平均漂移力 Fig. 8 Sway second-order mean drift force
3.2 不同结构运动响应分析

 图 9 不同结构在不同工况下横荡响应极值 Fig. 9 The extreme value of the sway response of the structure under different working conditions

 图 12 不同结构在不同工况下首摇响应极值 Fig. 12 The extreme value of the yaw response of the structure under different working conditions

 图 10 不同结构在不同工况下垂荡响应极值 Fig. 10 The extreme value of the heave response of the structure under different working conditions

 图 11 不同结构在不同工况下纵摇响应极值 Fig. 11 The extreme value of the pitch response of the structure under different working conditions
3.3 不同结构端部锚链受力分析

 图 13 锚链在不同工况下的受力曲线图 Fig. 13 The force curve diagram of the cable under different working conditions
4 结　语

1）单独考虑运动响应来说，结构A对风荷载较为敏感，更适合安装在风荷载较小的水平面，结构B和结构C可放置在波浪较大的区域；

2）单独考虑锚固锚链的受力情况可得出，结构A的锚链受力最大，且主要受风荷载的影响较大，结构C的锚链受力最小也最为稳定；

3）本文的研究结果对新型FPV结构设计提供了设计依据，可根据现实环境荷载设计相应的模型结构。

 [1] 耿娜. 太阳能光伏发电现状与发展前景分析[J]. 现代经济信息, 2018(17): 368. DOI:10.3969/j.issn.1001-828X.2018.25.312 [2] 陈静, 郑维娟. 中国太阳能光伏发电的发展现状及前景[J]. 时代农机, 2018, 45(3): 48–49. [3] MV A, SC A, AVA B, et al. Solar photovoltaic Tree: urban PV power plants to increase power to land occupancy ratio[J]. Renewable Energy, 2022. [4] PINTO S, STOKKERMANS J. Assessment of the potential of different floating solar technologies—overview and analysis of different case studies[J]. Energy Conversion and Management, 2020, 211. [5] PEREZ M, PEREZ R, FERGUSON C R, et al. Deploying effectively dispatchable floating PV on reservoirs: comparing floating PV to other renewable technologies[J]. Solar Energy, 2018, 174: 837-847. DOI:10.1016/j.solener.2018.08.088 [6] AB A, AW A, MW B, et al. Issues, challenges, and current lacunas in design, and installation of ground mounted solar PV module mounting structure (MMS)[J]. 2022. [7] 高亮, 窦珍珍, 白桦, 等. 光伏组件风荷载影响因素分析[J]. 太阳能学报, 2016, 37(8): 1931-1937. DOI:10.3969/j.issn.0254-0096.2016.08.005 [8] DS A, ME A, KA A, et al. Parameters optimization of solar PV cell/module using genetic algorithm based on non-uniform mutation[J]. Computational Intelligence in Electrical Engineering, 2021. [9] LI Z, JI J, YUAN W, et al. Experimental & numerical investigation and optimization on a novel flat-plate PV/T system using CdfTe thin-film solar modules of sandwich structure[J]. Solar Energy, 2021, 223: 261-277. DOI:10.1016/j.solener.2021.02.009 [10] 朱绍宇, 张世富, 张冬梅, 等. 基于AQWA对一种小型浮动平台的动态响应研究[J]. 化工机械, 2021, 48(6): 888-895. DOI:10.3969/j.issn.0254-6094.2021.06.018 [11] 王江云, 李雅琴, 姜龙俊, 等. 双进气道旋风分离器内不同粒径颗粒流动特性[J]. 化工机械, 2018, 45(2): 225-231. DOI:10.3969/j.issn.0254-6094.2018.02.024 [12] 丁勤卫, 李春, 袁伟斌, 等. 风波耦合作用下垂荡板对漂浮式风力机Spar平台动态响应影响[J]. 中国电机工程学报, 2019, 39(4): 1113-1127. DOI:10.13334/j.0258-8013.pcsee.180658 [13] 岳敏楠, 王博, 李春, 等. 阵列式平台漂浮式风电场Spar平台动态响应及稳定性改进研究[J]. 振动与冲击, 2021, 40(3): 263-278. DOI:10.13465/j.cnki.jvs.2021.03.035