﻿ 三体船压浪板虚拟仿真系统
 舰船科学技术  2023, Vol. 45 Issue (13): 162-165    DOI: 10.3404/j.issn.1672-7649.2023.13.033 PDF

1. 河南省容错服务器工程技术研究中心，河南 郑州 450046;
2. 河南职业技术学院，河南 郑州 450046

Development of a virtual simulation system for the wave plate of a trimaran ship
XU Hai-yan1,2
1. Henan Fault-tolerant Server Engineering Technology Research Center, Zhengzhou 450046, China;
2. Henan Polytechnic, Zhengzhou 450046, China
Abstract: As an important technology for improving the structural form of ships and reducing ship resistance, the wave suppression plate of a trimaran has received widespread attention and application in recent years, and has effectively solved the large longitudinal sway motion of the ship during navigation. This article first analyzes the motion and forces of the trimaran ship, establishes a mechanical model of the pressure plate, and then uses a combination of numerical calculation and simulation technology to develop a design and analysis system for the pressure plate of a trimaran ship based on virtual reality technology.
Key words: trimaran ballast board     virtual simulation     system development
0 引　言

1 SST k - ω湍流模型

 $\begin{gathered} \frac{{\partial \left( {\bar \rho k} \right)}}{{\partial t}} + \frac{{\partial \left( {\bar \rho {{\mu '}_j}k} \right)}}{{\partial {x_j}}} = \\ \frac{\partial }{{\partial {x_j}}}\left[ {\left( {{\mu _t} + {\sigma _k}{\mu _t}} \right)\frac{{\partial k}}{{\partial {x_j}}}} \right] + {P_k} - \bar \rho {\beta _k}k\varpi \left[ {1 + F\left( {{M_t}} \right)} \right]。\\ \end{gathered}$

 $\begin{gathered} \frac{{\partial \left( {\bar \rho \varpi } \right)}}{{\partial t}} + \frac{{\partial \left( {\bar \rho {{\mu '}_j}\varpi } \right)}}{{\partial {x_j}}} = \\ \frac{\partial }{{\partial {x_j}}}\left[ {\left( {{\mu _t} + {\sigma _k}{\mu _t}} \right)\frac{{\partial \varpi }}{{\partial {x_j}}}} \right] + \gamma \frac{\varpi }{{\text{k}}}{P_k} + \frac{{2\left( {1 - {F_1}} \right)\bar \rho {\sigma _{\varpi 2}}}}{\varpi } 。\\ \end{gathered}$
2 三体船压浪板设计实验 2.1 STAR-CCM+模型阻力计算

 ${F_{{D_{\text{r}}}}} = {F_{{D_{\text{c}}}}} - \left( {{F_D} + {F_T}} \right) 。$

 图 1 三体船压浪板受力分析示意图 Fig. 1 Schematic diagram of force analysis on the wave pressure plate of a trimaran ship
 ${F_D} = \frac{{{C_D}}}{{{S_C}{{{U}}_{{0}}}}}。$

 $F=\frac{1}{2}\rho A{U}^{2}{C}_{L}\left({\theta }_{2}\right)={k}_{2}{\theta }_{2} \text{，}$

 $P={F}_{flap}{x}_{2}={k}_{2}{x}_{2}{\theta }_{2} 。$
2.2 定常螺旋桨对阻力系数的影响

 $\text{tan}\alpha =\frac{BO}{MO}=\left[{1.3\times 10}^{{-4}}\sim 5.1\times 10^{-2}\right] 。$
3 人机交互设计

3.1 外部输入设备交互设计

3.2 UI交互设计

NGUI执行功能时，每个增加的控件，在控件上都有一个对应脚本，以实现该控件所对应的功能，而且UI控件有很多类型，如复选框按钮，滑条，下拉菜单，进度条，输入框，显示控件工具等。创立Button需要注意UI的一些特性，具体的内容如下：

1）为缩短重建与渲染的时间，UI元素的个数需降低，利用更改材质属性，实现UI元素色调的更改。对一些不透明背景后安置UI元素，设置成禁止不可见UI，缩短计算渲染的时间。

2）对NGUI编码进行重构优化。每一个widget都会记录在VBO，然后从顶点的index开始进行检索优化。在widget更改的情况下，只要改变widget本身顶点的信息就可以，不需要重构整个drawcall的mesh数据。

4 虚拟仿真实验三体船压浪板的实现

4.1 用户管理模块

4.2 场景漫游模块

4.3 视景模块设计

1）虚拟三体船压浪板界面的互相切换

 图 3 虚拟三体船压浪板界面跳转按键 Fig. 3 Virtual laboratory interface jump button

2）主实验界面中实验重置

3）实验选择的虚拟三体船压浪板包含了大量实验场景，所以需要一个场景选择的接口，让操作人员进行选择和跳跃。利用NGUI构建静态界面，通过代码调用初始化并展示预置界面，实现接口的转换。用户只要按一下按钮，就可以达到跳转的目的。

4.4 反馈模块设计

4.5 输入交互模块

1）建立以UI Sprite为输入框背景的Input名称；

2）向Input下面加上Label，以显示所录入的单词；

3）将Box Collider与UI Input组件一起加入Input操作对象中，设置对应属性。

4.6 通路测试

5 结　语

 [1] 黄明, 窦佩军, 王裕平, 等. 基于虚拟仿真和实船验证的恶劣天气下LNG船舶靠离泊操作分析[J]. 武汉理工大学学报(交通科学与工程版), 2022, 46(4): 743-748. HUANG Ming, DOU Pei-jun, WANG Yu-ping, et al. Analysis of berthing and unberthing operations of LNG ships in severe weather based on virtual simulation and real ship verification[J]. Journal of Wuhan University of Technology (Transportation Science and Engineering Edition), 2022, 46(4): 743-748. [2] 谢宇, 何坤金, 陈义仁, 等. 基于Unity3D的疏浚船作业虚拟仿真系统[J]. 计算机仿真, 2022, 39(7): 426-432. XIE Yu, HE Kun-jin, CHEN Yi-ren, et al. Virtual simulation system for dredging ship operation based on Unity3D[J]. Computer Simulation, 2022, 39(7): 426-432. [3] 陈玲, 孟巧, 周陈炎. 基于NURBS的模块化三体船总体设计和优化[J]. 舰船科学技术, 2022, 44(18): 41-44. CHEN Ling, MENG Qiao, ZHOU Chen-yan. Overall Design and Optimization of Modular Trimaran Based on NURBS[J]. Ship Science and Technology, 2022, 44(18): 41-44. [4] 韩阳, 郭春雨, 赵大刚, 等. 基于虚拟仿真的船模阻力实验系统设计与应用[J]. 实验科学与技术, 2022, 20(3): 21-25. HAN Yang, GUO Chun-yu, ZHAO Da-gang, et al. Design and application of ship model resistance experiment system based on virtual simulation[J]. Experimental Science and Technology, 2022, 20(3): 21-25. [5] 韩赵唤, 冯柯, 申金星, 等. 基于虚拟仿真的船艇动力系统维修模拟训练平台[J]. 现代制造技术与装备, 2020, 56(11): 76-79. HAN Zhao-huan, FENG Ke, SHEN Jin-xing, et al. Simulation training platform for maintenance of ship power system based on virtual simulation[J]. Modern Manufacturing Technology and Equipment, 2020, 56(11): 76-79. DOI:10.3969/j.issn.1673-5587.2020.11.026