﻿ 便携式侧扫声呐拖体水动力仿真与试验研究
 舰船科学技术  2023, Vol. 45 Issue (13): 119-123    DOI: 10.3404/j.issn.1672-7649.2023.13.024 PDF

1. 海鹰企业集团有限责任公司，江苏 无锡 214142;
2. 海军装备部驻无锡地区军事代表室，江苏 无锡 214142

Hydrodynamic simulation and experimental study of portable side scan sonar towed body
ZHANG Pei-xin1, MU Xuan2, SHEN Hui1, XU Chong1, XU Peng1, LIU Yong-qiang1
1. Haiying Enterprise Group Co., Ltd., Wuxi 214142, China;
2. Naval Equipment Department Military Representative Office in Wuxi, Wuxi 214142, China
Abstract: Portable side scan sonar has the characteristics of small size and light weight. It can be quickly carried on surface ships, which is convenient for transportation and use. The towing attitude of the sonar towing body is determined by gravity, buoyancy, hydrodynamic force and traction force. The hydrodynamic simulation of the sonar towing body is carried out by using finite element software. The hydrodynamic performance and towing steady-state trim angle of the sonar towing body under different flow velocities are calculated according to the moment balance equation, and compared with the towing test results to verify the accuracy of the simulation results. The finite element method is used to calculate the trim angle of the towed body equipped with different angle auxiliary submerged wings and tail wings. Finally, the trim angle of the sonar towed body is reduced from 15° to less than 10°. The simulation results are proved to be effective by experiments, which can provide a reference for the study of the towed attitude of sonar towed body.
Key words: portable side scan sonar     towed body     angle of trim     hydrodynamic simulation     towing trial
0 引　言

1 理论基础 1.1 守恒定律

 $\frac{\partial \rho }{\partial t}+\nabla \left(\mathrm{\rho }{\boldsymbol{u}}\right)=0 。$ (2)

 $\rho \frac{\mathrm{d}\mathit{u}}{\mathrm{d}t}=\rho {\boldsymbol{f}}-\nabla {\boldsymbol{P}}+\nabla {\boldsymbol{\tau }} 。$ (3)

 $\rho \frac{\mathrm{d}e}{\mathrm{d}t}=-{\boldsymbol{P}}\nabla {\boldsymbol{u}}+\mathrm{\varnothing }+q-\nabla q 。$ (4)

1.2 标准k-ε模型

 $\frac{\partial }{\partial t}\left(\rho k\right)+\frac{\partial }{\partial {x}_{i}}\left(\rho {U}_{i}k\right)=\frac{\partial }{\partial {x}_{j}}\left(\frac{{u}_{eff}}{{\mathrm{\delta }}_{k}}\frac{\partial k}{\partial {x}_{k}}\right)+{G}_{k}-\mathrm{\rho }\varepsilon 。$ (5)

 $\frac{\partial }{\partial t}\left(\rho \varepsilon \right)+\frac{\partial }{\partial {x}_{i}}\left(\rho {U}_{i}\varepsilon \right)=\frac{\partial }{\partial {x}_{j}}\left(\frac{{u}_{\mathrm{e}\mathrm{f}\mathrm{f}}}{{\mathrm{\delta }}_{\varepsilon }}\frac{\partial \varepsilon }{\partial {x}_{j}}\right)+{\rho} \Bigg(C_{{\varepsilon}1}{G}_{k}-{\mathrm{C}}_{\mathrm{\varepsilon }2}\frac{{\mathrm{\varepsilon }}^{2}}{k}\Bigg) 。$ (6)

1.3 力矩平衡方程

 $G{l}_{2}\mathrm{cos}{(\theta }_{n}+\theta )-F{l}_{1}\mathrm{cos}{(\theta }_{m}+\theta )+M=0 。$ (7)

2 便携式侧扫声呐拖体计算模型 2.1 便携式侧扫声呐拖体组成

 图 1 便携式侧扫声呐拖体示意图 Fig. 1 Schematic diagram of portable side scan sonar towed body
2.2 计算模型

 图 2 便携式侧扫声呐拖体有限元模型 Fig. 2 Finite element model of portable side scan sonar towed body

2.3 边界条件

 图 3 有限元计算边界条件及流域示意图 Fig. 3 Finite element calculation boundany conditions and watershed schematic diagram
3 便携式侧扫声呐拖体水动力分析 3.1 侧扫声呐拖体表面流线与压力分布

 图 4 声呐拖体表面速度分布与流线图 Fig. 4 Velocity distribution and streamline diagram of sonar surface

 图 5 声呐拖体表面总压分布云图 Fig. 5 Cloud chart of total pressure distribution on sonar surface

3.2 水动力性能计算

 图 6 水动力仿真结果 Fig. 6 Hydrodynamic simulation results

4 拖曳姿态的仿真与试验数据对比

 图 7 模型2纵倾角与水动力力矩的关系曲线 Fig. 7 Relation curve between the trim angle and hydrodynamic moment of model 2

5 声呐拖体拖曳姿态优化

 图 8 模型 3~模型5纵倾角与水动力力矩的仿真曲线 Fig. 8 Simulation curve of trim angle and hydrodynamic moment of model 3~model 5

6 结　语

1）通过理论与仿真相结合的方法可提前预报声呐拖体水下拖曳的稳态纵倾角，仿真结果与试验误差在10%以内，具备准确性，可为后期声呐拖体的拖曳姿态研究提供参考。

2）通过对助潜翼和尾翼的角度进行优化，得到一种水下拖曳稳态纵倾角较小的声呐拖体。加装助潜翼后，在6 kn航速内，该声呐拖体的拖曳稳态纵倾角在10°以内，且不同航速下的纵倾角变换较小，具备较好的拖曳稳定性。

3）助潜翼和尾翼角度增加可为声呐拖体提供较大的下沉力，但同时声呐拖体的迎流阻力也相应增加，且速度越大，水平力与垂向力增加也越明显，应根据拖缆拉力选取合适角度的助潜翼和尾翼。

 [1] 袁毅之, 徐一中, 蔡丽华. 带翼声纳拖体的稳定性问题及三点拖曳方式[J]. 海洋工程, 1984(2): 48-57. YUAN Yi-zhi, XU Yi-zhong, CAI Li-hua. Stability of towed body of winged sonar and three-point towing mode[J]. The Ocean Engineering, 1984(2): 48-57. DOI:10.16483/j.issn.1005-9865.1984.02.005 [2] 洪有财, 陈小星, 龚凯, 等. 声纳拖体拖曳稳定性研究[J]. 声学与电子工程, 2013(2): 24-27. HONG You-cai, CHEN Xiao-xing, GONG Kai, et al. Study on towed stability of sonar towed body[J]. Acoustics and Electronics Engineering, 2013(2): 24-27. [3] 孙现有, 刘显龙. 浮式翼拖曳体总体设计与稳定性分析[J]. 水雷战与舰船防护, 2018, 26(1): 50-53. SUN Xian-you, LIU Xian-long. Overall design and stability analysis of floating wing towed body[J]. Mine Warfare & Ship Self-defence, 2018, 26(1): 50-53. [4] 卢军. 主动式声纳列阵拖曳系统姿态数值计算[J]. 海洋工程, 2001, 19(3): 85-90. DOI:10.16483/j.issn.1005-9865.2001.03.019 [5] 孙丽, 刘贵杰, 王猛, 等. AUV导流罩外流场数值仿真与几何参数优化[J]. 计算机仿真, 2011, 28(5): 188-192. SUN Li, LIU Gui-jie, WANG Meng, et al. Numerical simulation of external flow field and geometry parameters optimization of AUV dome on bow[J]. Computer Simulation, 2011, 28(5): 188-192. DOI:10.3969/j.issn.1006-9348.2011.05.046 [6] 杜礼明, 张进. 基于降低航行阻力的声呐导流罩外形优化[J]. 舰船科学技术, 2013, 35(4): 75-79. DU Li-ming, ZHANG Jin. Numerical optimization of sonar dome profile based on reducing its sailing resistance[J]. Ship science and technology, 2013, 35(4): 75-79. [7] HSIEH.K T,. RAJAMANI.R K Mathematical model of the hydrocyclone based on physics of fluid flow[J]. AICHE Journal, 1991, 37(5): 735-746. DOI:10.1002/aic.690370511 [8] 黄一清, 许冲, 张沛心, 等. 拖体拖曳稳态纵倾角计算仿真及试验研究[J]. 船舶工程, 2022, 44(1): 137-141. HUANG Yi-qing, XU Chong, ZHANG Pei-xin, et al. Calculation simulation and experiment of steady-state trim angle of towed body[J]. Ship Engineering, 2022, 44(1): 137-141.