﻿ 船舶动力系统自动化风力发电模型构建
 舰船科学技术  2023, Vol. 45 Issue (13): 111-114    DOI: 10.3404/j.issn.1672-7649.2023.13.022 PDF

Construction of automatic wind power generation model for ship power system
HUANG Kai-feng
China Classification Society Guangzhou Branch, Guangzhou 510000, China
Abstract: The automatic wind power generation model of ship power system is constructed to provide reference for the analysis of wind power generation. The wind speed model was established by the four-component method, and the wind speed value was obtained. According to the wind speed value, the wind wheel model of ship power system is constructed, and the wind torque is obtained. Based on the wind torque, the transmission system model of ship power system is constructed, and the moment of inertia is obtained. Based on the moment of inertia, the steady-state and transient models of automatic wind power generation are constructed, and the output power of wind power generation of ship power system is obtained. The experiment proves that the model can effectively synthesize the wind speed curve and obtain the rotational inertia of high speed and low speed. Under the wind speed disturbance, the model can effectively obtain the power output of the automatic wind power generation of the ship power system.
Key words: ship power system     wind power generation     model construction     four-component method     transmission system
0 引　言

1 船舶动力系统自动化风力发电模型 1.1 船舶动力系统的风速模型

 $v = {v_m} + {v_g} + {v_r} + {v_a} 。$ (1)

${v_m}$ 的计算公式如下：

 ${v_m} = \bar v ，$ (2)

${v_g}$ 的计算公式如下：

 {v_g} = \left\{ \begin{aligned} & 0,\mathop {}\nolimits\mathop {}\nolimits\mathop {}\nolimits\mathop {}\nolimits\mathop {}\nolimits\mathop {}\nolimits\mathop {}\nolimits\mathop {}\nolimits\mathop {}\nolimits\mathop {}\nolimits\mathop {}\nolimits\mathop {}\nolimits{\mathop {}\nolimits_{}}t < {T_{gs}} ，\\ & \frac{{{v_{g,\max }}}}{2} - \frac{{{v_{g,\max }}}}{2}\cos \left( {\frac{{2{\text{π}} t - 2{\text{π}} {T_{gs}}}}{{{T_{ge}} - { T_{gs}}}}} \right),\mathop {}\nolimits{T_{gs}} \leqslant t < {T_{ge}} ，\\ & 0,\mathop {}\nolimits\mathop {}\nolimits\mathop {}\nolimits\mathop {}\nolimits\mathop {}\nolimits\mathop {}\nolimits\mathop {}\nolimits\mathop {}\nolimits\mathop {}\nolimits\mathop {}\nolimits\mathop {}\nolimits\mathop {}\nolimits{\mathop {}\nolimits_{}}t \geqslant {T_{ge}}。\end{aligned} \right. (3)

${v_r}$ 的计算公式如下：

 {v_r} = \left\{ \begin{aligned} & 0,\mathop {}\nolimits\mathop {}\nolimits\mathop {}\nolimits\mathop {}\nolimits\mathop {}\nolimits\mathop {}\nolimits\mathop {}\nolimits\mathop {}\nolimits\mathop {}\nolimits\mathop {}\nolimits\mathop {}\nolimits\mathop {}\nolimits{\mathop {}\nolimits_{}}t < {T_{rs}} ，\\ & \frac{{{v_{r,\max }}}}{2} - \frac{{{v_{r,\max }}}}{2}\cos \left( {\frac{{2{\text{π}} t - 2{\text{π}} {T_{rs}}}}{{{T_{re}} - {T_{rs}}}}} \right),\mathop {}\nolimits{T_{rs}} \leqslant t < {T_{re}} ，\\ & 0,\mathop {}\nolimits\mathop {}\nolimits\mathop {}\nolimits\mathop {}\nolimits\mathop {}\nolimits\mathop {}\nolimits\mathop {}\nolimits\mathop {}\nolimits\mathop {}\nolimits\mathop {}\nolimits\mathop {}\nolimits\mathop {}\nolimits{\mathop {}\nolimits_{}}t \geqslant {T_{re}} 。\end{aligned} \right. (4)

1.2 船舶动力系统的风轮模型

 $P = \frac{{{\text{π}} \gamma \rho {v^3}{R^2}Y\left( {f,\kappa } \right)}}{2}。$ (5)

 $f = \frac{{\omega R}}{v}，$ (6)

 $N = \frac{P}{\omega } = \frac{{{\text{π}} \gamma \rho {v^2}{R^3}Y'\left( {f,\kappa } \right)}}{2} ，$ (7)

 $Y'\left( {f,\kappa } \right) = \frac{{Y\left( {f,\kappa } \right)}}{f} 。$ (8)
1.3 船舶动力系统的传动系统模型

 ${O}_{h}\frac{{\rm{d}}{\omega }_{h}}{{\rm{d}}t}=\frac{\eta }{\alpha }N-{N}_{G}\text{，}{O}_{l}\frac{{\rm{d}}{\omega }_{l}}{{\rm{d}}t}=N-\frac{\alpha }{\eta }{N}_{G} 。$ (9)

 ${\omega _h} = \alpha {\omega _l} ，$ (10)

${O_h}$ ${O_l}$ 的计算公式如下：

 $\begin{split} &{O_h} = \frac{{\eta {O_1} + \eta {O_a}}}{{{\alpha ^2}}} + {O_2} + {O_b} ，\\ &{O_l} = {O_1} + {O_a} + \frac{{{\alpha ^2}{O_2} + {\alpha ^2}{O_b}}}{\eta } 。\end{split}$ (11)

1.4 自动化风力发电模型的构建

 $\begin{split}\hat P =& \left\{ \frac{{U_1^2}}{Z}O\left[ {\frac{{{c_1}c_2^2}}{{{s^2}}} + \frac{{x_m^2c_2^2}}{s} + {c_1}{{\left( {{x_2} + {x_m}} \right)}^2}} \right] \right.+\\ &\left.\frac{{{U_1}{U_2}}}{{sZ}}{x_m}\left( {A\sin \theta - B\cos \theta } \right) \right\} 。\end{split}$ (12)

$A$ $B$ $Z$ 的计算公式如下：

 $\left\{ \begin{split} &A = \frac{{{c_1}{c_2}}}{s} - \left( {{x_1}{x_m} + {x_m}{x_2}} \right)，\\ &B = {x_m}\left( {{c_1} + \frac{{{c_2}}}{s}} \right) + {c_1}{x_2} + \frac{{{c_2}}}{s}{x_1} ，\\ &C = {\left( {A + B} \right)^2} 。\end{split} \right.$ (13)

 $\begin{split} \hat Q =& \left\{ \frac{{U_1^2}}{Z}O\left[ {\left( {{x_2} + {x_m}} \right)\left( {{x_1}{x_m} + {x_m}{x_2}} \right) + \frac{{c_2^2}}{{{s^2}}}{{\left( {{x_1} + {x_m}} \right)}^2}} \right] +\right.\\ &\left.\frac{{{U_1}{U_2}}}{{sZ}}{x_m}\left( {A\sin \theta - B\cos \theta } \right) \right\}，\\[-15pt]\end{split}$ (14)

 ${\widehat{Q}}_{s}=O\left({u}_{ds}{i}_{ds}+{u}_{qs}{i}_{qs}\right)\text{，}{\widehat{P}}_{s}=O\left({u}_{qs}{i}_{ds}-{u}_{ds}{i}_{qs}\right) 。$ (15)

 ${\widehat{Q}}_{r}=O\left({u}_{dr}{i}_{dr}+{u}_{qr}{i}_{qr}\right)\text{，}{\widehat{P}}_{r}=O\left({u}_{qr}{i}_{dr}-{u}_{dr}{i}_{qr}\right) 。$ (16)

 $\left\{ \begin{split} & \frac{{{\rm{d}}{i_d}}}{{{\rm{d}}t}} = - \frac{{{R_s}}}{L}{i_d} + Ow{i_q} + \frac{1}{L}{u_d} ，\\ & \frac{{{\rm{d}}{i_q}}}{{{\rm{d}}t}} = - \frac{{{R_s}}}{L}{i_d} - Ow\left( {{i_d} + \frac{1}{L}\phi } \right) + \frac{1}{L}{u_q} 。\end{split} \right.$ (17)

2 实验结果与分析

 图 1 风速曲线 Fig. 1 Resultant wind speed curve

 图 2 高速端与低速端的转动惯量 Fig. 2 Moment of inertia at high speed and low speed

 图 3 自动化风力发电的功率响应特性 Fig. 3 Power response characteristics of automated wind power generation
3 结　语

 [1] 杨元龙, 孙玲, 张晓滨, 等. 基于数字孪生的舰船蒸汽动力总体模型框架研究[J]. 中国舰船研究, 2021, 16(2): 157-167. YANG Yuanlong, SUN Ling, ZHANG Xiaobin, et al. Analysis on the overall model framework of ship steam power based on digital twin[J]. Chinese Journal of Ship Research, 2021, 16(2): 157-167. DOI:10.19693/j.issn.1673-3185.01884 [2] 周少伟, 吴炜, 张涛, 等. 舰船动力系统数字孪生技术体系研究[J]. 中国舰船研究, 2021, 16(2): 151-156. ZHOU Shaowei, WU Wei, ZHANG Tao, et al. Digital twin technical system for marine power systems[J]. Chinese Journal of Ship Research, 2021, 16(2): 151-156. [3] 张惊朝, 戴靠山, 施袁锋. 基于状态空间模型的大型风力机运行模态及不确定性分析[J]. 结构工程师, 2022, 38(1): 14-23. ZHANG Jingzhao, DAI Kaoshan, SHI Yuanfeng. Operational modal analysis with uncertainty quantification using state-space model for large-scale wind turbines[J]. Structural Engineers, 2022, 38(1): 14-23. [4] 宋子秋, 刘吉臻, 胡阳, 等. 考虑冰载荷的近海固定桩风电机组运行特性建模与分析[J]. 中国电机工程学报, 2021, 41(12): 4144-4153. SONG Ziqiu, LIU Jizhen, HU Yang, et al. Modeling and analysis of bottom fixed platform offshore wind turbine under ice loads[J]. Proceedings of the CSEE, 2021, 41(12): 4144-4153. [5] 季一润, 槐青, 袁茜, 等. 基于虚拟同步型风力发电机组的风电场动态聚合模型研究[J]. 电力系统及其自动化学报, 2023, 35(2): 37-44. JI Yirun, HUAI Qing, YUAN Qian, et al. Dynamic aggregation model of wind farm based on VSG wind turbines[J]. Proceedings of the CSU-EPSA, 2023, 35(2): 37-44. [6] 陈婕, 张怡, 房方, 等. 基于仿射扰动反馈的风力发电机组多目标随机模型预测控制[J]. 中国电机工程学报, 2023, 43(2): 496-507. CHEN Jie, ZHANG Yi, FANG Fang, et al. Affine-disturbance-feedback-based multi-objective stochastic model predictive control of wind turbine[J]. Proceedings of the CSEE, 2023, 43(2): 496-507.