﻿ 翼身融合水下滑翔机水动力性能对比分析
 舰船科学技术  2023, Vol. 45 Issue (13): 84-88    DOI: 10.3404/j.issn.1672-7649.2023.13.017 PDF

The hydrodynamic contrastive analysis of blended-wing-body underwater glider
LI Yi-ming, FANG Bin, LI Ding-yuan
College of Naval Architecture and Ocean Engineering, Naval University of Engineering, Wuhan 430033, China
Abstract: As a new type of underwater glider, the blended-wing-body underwater glider has excellent hydrodynamic performance, and its research is more and more extensive. In order to demonstrate that the blended-wing-body underwater glider has the advantage of hydrodynamic characteristics compared with the traditional underwater glider with equal volume, two kinds of underwater gliders are selected for three-dimensional modeling, and their internal volume is controlled to be equal. Computational fluid dynamics method is used to simulate the two models at different speeds and different angles of attack, and the hydrodynamic performance of the two models is compared and analyzed. The conclusion shows that under the condition of equal volume, the maximum lift-drag ratio of the blended-wing-body underwater glider is 2.3 times higher than that of the traditional underwater glider.
Key words: underwater glider     blended-wing-body     computing fluid dynamics     hydrodynamic
0 引　言

1 外形设计 1.1 传统水下滑翔机设计方案

 图 1 传统水下滑翔机三维模型 Fig. 1 The 3D model of the traditional underwater glider

1.2 翼身融合外形设计方案

 图 2 翼身融合水下滑翔机三维模型 Fig. 2 The 3D model of the BWB underwater glider

2 数值计算 2.1 计算域与网格划分

 图 3 计算域 Fig. 3 Computational domain

 图 4 网格划分 Fig. 4 Mesh generation of underwater glider
2.2 计算工况确定

2.3 计算方法

 $\frac{\partial \rho }{\partial \text{t}}+\nabla \cdot \left(\rho u\right)=0 ，$ (1)
 $\frac{\partial \left(\rho {\boldsymbol{u}}\right)}{\partial {t}}+\nabla \cdot\left(\rho {\boldsymbol{uu}}\right)=\nabla \cdot\Sigma +\rho f 。$ (2)

 $\rho \frac{{{\rm{D}}k}}{{{\rm{D}}t}} + \rho \frac{{\partial \left( {k{{\boldsymbol{u}}_i}} \right)}}{{\partial {x_i}}} = \frac{\partial }{{\partial {x_j}}}\left( {{T_k}\frac{{\partial k}}{{\partial {x_j}}}} \right) + {G_k} - {Y_k} ，$ (3)
 $\rho \frac{{{\rm{D}}\omega }}{{{\rm{D}}t}} + \rho \frac{{\partial \left( {\omega {{\boldsymbol{u}}_i}} \right)}}{{\partial {x_i}}} = \frac{\partial }{{\partial {x_j}}}\left( {{T_\omega }\frac{{\partial \omega }}{{\partial {x_j}}}} \right) + {G_\omega } - {Y_\omega }。$ (4)

3 计算结果分析

 图 5 不同速度下总阻力随攻角α曲线 Fig. 5 Curves of total drag changing with α at different speeds

 图 6 不同速度下升力随攻角α曲线 Fig. 6 Curves of lift changing with α at different speeds

 图 7 不同速度下阻力系数随攻角α曲线 Fig. 7 Curves of drag coefficient changing with α at different speeds

 图 8 不同速度下升力系数随攻角α曲线 Fig. 8 Curves of lift coefficient changing with α at different speeds

 图 9 不同速度下升阻比随攻角α曲线 Fig. 9 Curves Lift-drag ratio changing with α at different speeds

 图 10 1.00 m/s速度下两模型升阻比曲线 Fig. 10 Curves of lift-drag ratio the two models at 1.00 m/s
4 结　语

1）设计的2种水动力外形的升力、阻力及其系数随着攻角增大，变化趋势一致；

2）2种水动力外形上浮/下潜时获得最大升阻比时对应的攻角分别为6°和7°；

3）容积相等条件下，翼身融合水下滑翔机水动力性能对比传统水下滑翔机，升阻比提升了2.3倍。

 [1] ZHANG S W, YU J C, ZHANG A Q, et al. Spiraling motion of underwater gliders: modeling, analysis, and experimental results[J]. Ocean Engineering, 2013, 60(3): 1-13. [2] WEBB D C, SIMONETTI P J, JONES C P. SLOCUM: an underwater glider propelled by environmental energy[J]. IEEE Journal of Oceanic Engineering, 2001, 26(4): 447-452. DOI:10.1109/48.972077 [3] ERIKSEN C C, OSSE T J, LIGHT R D, et al. Seaglider: a long-range autonomous underwater vehicle for oceanographic research[J]. IEEE Journal of Oceanic Engineering, 2001, 26(4): 424-436. DOI:10.1109/48.972073 [4] SHERMAN J, DAVIS R E, OWENS W B, et al. The autonomous underwater glider "Spray"[J]. IEEE Journal of Oceanic Engineering, 2001, 26(4): 437-446. DOI:10.1109/48.972076 [5] 李志伟, 崔维成. 水下滑翔机水动力外形研究综述[J]. 船舶力学, 2012, 16(7): 829-837. DOI:10.3969/j.issn.1007-7294.2012.07.014 [6] LIEBECK R H. Design of the blended wing body subsonic transport[J]. J of Aircraft, 2004, 41(1): 10-25. DOI:10.2514/1.9084 [7] 朱自强, 王晓璐, 吴宗成, 陈泽民. 民机的一种新型布局形式——翼身融合体飞机[J]. 航空学报, 2008(1): 49-59. DOI:10.3321/j.issn:1000-6893.2008.01.007 [8] OKONKWO P, SMITH H. Review of Evolving Trends in Blended wing Body Aircraft Design[J]. Progress in Aerospace Sciences, 2016( suppl 1) : 336 [9] 孙春亚, 宋保维, 王鹏. 翼身融合水下滑翔机外形设计与水动力特性分析[J]. 舰船科学技术, 2016, 38(19): 78-83. [10] 张代雨, 张贝, 王志东, 等. 翼身融合水下滑翔机水动力及外形优化设计[J]. 船舶工程, 2021, 43(3): 117-123. DOI:10.13788/j.cnki.cbgc.2021.03.21 [11] 姜钧喆. 水下滑翔机总体设计与水动力性能分析[D]. 上海交通大学, 2018. DOI:10.27307/d.cnki.gsjtu.2018.001523. [12] 张鸣远, 景思睿, 李国君. 高等工程流体力学[M]. 西安交通大学出版社, 2006: 50-63. [13] 乔永亮, 桂洪斌, 刘祥鑫. 三维圆柱绕流数值模拟湍流方法的选择[J]. 水利水运工程学报, 2016(3): 119-125. DOI:10.16198/j.cnki.1009-640X.2016.03.016