﻿ 基于Rankine源方法的高速船舶波浪载荷计算
 舰船科学技术  2023, Vol. 45 Issue (13): 40-43    DOI: 10.3404/j.issn.1672-7649.2023.13.008 PDF

A method for calculating wave load on high speed ships based on rankine source method
HU Cai-tu
Liaocheng University Dongchang College, Liaocheng 252000, China
Abstract: As a high speed vessel for water entertainment and passenger transportation, it has good speed in water operations. However, compared to the land environment, the water environment is complex and has high specificity for safety management and environmental protection. Therefore, it is particularly important to strengthen the calculation method of wave loads on high speed vessels and maintain their normal operation. This article is based on the Rankine source method and explores relevant calculation methods for wave loads on high-speed vessels of HNA. The aim is to enhance the advantages of the algorithm, thereby improving the safety of water passenger transportation and water entertainment.
Key words: Rankine source method     high speed vessels     wave load
0 引　言

1 半潜式快艇主要设计参数 1.1 主要尺寸参数选定

1.2 质量参数选定

1.3 主要性能参数选定

1.4 减振机构定位设计

 图 1 减振系统定位点示意图 Fig. 1 Vibration reduction system positioning point diagram

1.5 驱动轴干涉分析

 图 2 驱动轴位置变动示意图 Fig. 2 Schematic diagram of drive shaft position change
2 基于Rankine源方法的波浪载荷计算

2.1 平均波浪速度

 $v\left( h \right) = v\left( {{h_0}} \right) \times {\left( {\frac{h}{{{h_0}}}} \right)^\alpha } \text{。}$

2.2 脉动波浪速度

Davenport波浪速度谱是一种不随高度变化的水平脉动波浪速度功率谱，其函数表达式如下：

 $\frac{{n}{S}_{{n}}({n})}{4K{{v ¯}}_{\text{10}}{}^{2}}=\frac{{{x}}^{2}}{(1+{{x}}^{2}{)}^{4/3}}{x}=1200\frac{{n}}{\bar v_1} \text{。}$

Kaimal波浪速度谱数学表达式如下：

 $S{n}({z},n)=\frac{200{u}_{0}^{2}x}{n{(1+50)}^{5/3}},{u}_{0}^{2}=K{\overline{v}}_{10}{}^{2},x=\frac{nz}{{\overline{v}}_{z}} \text{。}$

Von Karman波浪速度谱表达式如下：

 $S{n}（{z}\text{，}n）=\frac{4{\sigma }_{{u}}^{2}{f}}{n{(1+70.8{{f}}^{2})}^{5/6}} \text{，}$
 ${f}=\frac{{n}L{u}({z})}{{{v ¯}}_{{z}}}\text{，}L({z})=1000 \left(\frac{{z}}{30}\right)^{0.5} \text{。}$
2.3 波浪载荷计算理论

 $V = (1 - a){V_0} \text{，}$
 $P = 2\rho A{V_0}a{(1 - a)^3} \text{。}$

 $T = 2\rho A{V_0}a(1 - a) \text{，}$

 ${C_P} = \frac{P}{{\left(\dfrac{1}{2}\rho AV_0^3\right)}} = 4a{(1 - a)^2} \text{，}$
 ${C_T} = \frac{T}{{\left(\dfrac{1}{2}\rho AV_0^2 \right)}} = 4a(1 - a) \text{。}$

 ${\rm{d}}T = \frac{1}{2}\rho {W^2} + ({C_L}\cos \varphi + {C_D}\sin \varphi )c{\rm{d}}r \text{。}$

 ${C_L} = L/\left(\frac{1}{2}\rho {V^2}S\right) \text{，}$
 ${C_D} = D/\left(\frac{1}{2}\rho {V^2}S\right) \text{。}$
2.4 波浪载荷作用下的瞬态动力学分析

 图 3 不同节点位移分量对比 Fig. 3 Comparison of displacement components at different nodes

3 基于Rankine源方法半潜式快艇有限元建模

3.1 模态分析

3.2 阻尼计算

3.3 谱分析的方法与验证

 图 4 波浪载荷Fz功率谱密度函数 Fig. 4 Wave load Fz power spectral density function

 $S\sigma (w) = {\left| {{H_{{\text{wave}}}}{\text{(w)}}} \right|^2}{S_{{\text{wave}}}}{\text{(w)}} + {\left| {{{\text{H}}_{{\text{wind}}}}{\text{(w)}}} \right|^2}{S_{wind}}(w) \text{。}$

 $\delta = \frac{{{D_{\text{f}}} - {D_{\text{t}}}}}{{{D_{\text{t}}}}} \times 100\text{%} 。$
4 结　语

 [1] 于小伟, 姜涛, 罗瑞锋. 新型浮式平台波浪载荷计算方法研究与应用[J]. 船舶与海洋工程, 2022, 38(1): 6-7. YU Xiao-wei, JIANG Tao, LUO Rui-feng. Research and application of new calculation method for wave loads on floating platforms[J]. Ship and Ocean Engineering, 2022, 38(1): 6-7. [2] 王澄, 张高峰, 袁昌耀, 等. 基于计算流体力学的船舶风载荷计算方法分析[J]. 天津理工大学学报, 2021, 037(2): 21-26. WANG Cheng, ZHANG Gao-feng, YUAN Chang-yao, et al. Analysis of calculation method for ship wind load based on computational fluid dynamics[J]. Journal of Tianjin University of Technology, 2021, 037(2): 21-26. DOI:10.3969/j.issn.1673-095X.2021.02.005 [3] 陆泽华, 曹旭, 李传庆. 基于数值计算的船舶波浪增阻和运动响应预报方法论证[J]. 上海船舶运输科学研究所学报, 2022, 45(4): 13-19+32. LU Ze-hua, CAO Xu, LI Chuan-qing. Demonstration of forecasting method for ship wave resistance and motion response based on numerical calculation[J]. Journal of Shanghai Institute of Shipping Science, 2022, 45(4): 13-19+32. DOI:10.3969/j.issn.1674-5949.2022.04.003 [4] 杨云涛, 朱仁传, 高慧. 波浪中航行船舶水动力和运动分析的Rankine源高阶面元法研究[J]. 中国造船, 2022, 63(1): 14-27. YANG Yun-tao, ZHU Ren-chuan, GAO Hui. Research on the Rankine source high-order surface element method for hydrodynamic and motion analysis of ships sailing in waves[J]. China Shipbuilding, 2022, 63(1): 14-27. DOI:10.3969/j.issn.1000-4882.2022.01.002 [5] 杨云涛, 朱仁传, 陆安, 等. 基于频域高阶Rankine源法的有航速船舶斜浪中六自由度运动数值计算研究[J]. 船舶力学, 2022, 26(11): 1668-1679. YANG Yun-tao, ZHU Ren-chuan, LU An, et al. Numerical calculation of six degrees of freedom motion in oblique waves of ships with speed based on high-order Rankine source method in frequency domain[J]. Ship Mechanics, 2022, 26(11): 1668-1679. DOI:10.3969/j.issn.1007-7294.2022.11.010 [6] 崔金龙, 李元奎, 索基源, 等. 基于改进A^(*)算算法的船舶航向航速协同优化方法[J]. 大连海事大学学报, 2022, 48(4): 10-12. CUI Jin-long, LI Yuan-kui, SUO Ji-yuan, et al. Collaborative optimization method for ship course and speed based on improved A^(*) algorithm[J]. Journal of Dalian Maritime University, 2022, 48(4): 10-12. [7] 吕向琪, 张志恒, 张新曙, 等. 基于频域Rankine面元法的船舶耐波性计算和分析[J]. 海洋工程, 2023, 41(1): 68-81. LV Xiang-qi, ZHANG Zhi-heng, ZHANG Xin-shu, et al. Calculation and analysis of ship seakeeping based on frequency domain rankine surface element method[J]. Ocean Engineering, 2023, 41(1): 68-81. DOI:10.16483/j.issn.1005-9865.2023.01.008