﻿ 攻角对杆状弹体入水侵彻特性影响数值分析
 舰船科学技术  2023, Vol. 45 Issue (13): 6-13    DOI: 10.3404/j.issn.1672-7649.2023.13.002 PDF

Numerical analysis of influence of angle of attack on penetration characteristics of long-rod projectile entering water
WANG Ke, HOU Hai-liang, LI Yong-qing, LI Dian
Department of Naval Architecture Engineering, Naval University of Engineering, Wuhan 430033, China
Abstract: To reveal the penetration characteristics of long- rod projectile with angle of attack entering water at high velocity, fluid-structure coupling algorithm in LS-DYNA was adopted to study the influence of velocity and length-diameter ratio of projectile body at different angle of attack on residual characteristics, cavity shape and attitude of projectile body after entering water. The results show that the attitude of the long-rod projectile will turn over after it hits the water, and the attitude of the long rod will be stable after a period of time. After entering water at high speed with the angle of attack, the warhead will produce asymmetric coarse erosion deformation, integral plastic bending deformation and coupling of the two deformation modes. The projectile with small aspect ratio has smaller damage ability, smaller trajectory yaw, but larger attitude deflection. The projectile with a large aspect ratio has stronger damage ability, smaller attitude deflection, but larger trajectory yaw distance. The larger the aspect ratio is, the more sensitive the projectile is to the change of the Angle of attack.
Key words: angle of attack     long-rod projectile     high-velocity water entry     numerical analysis
0 引　言

1 数值计算方法及验证 1.1 数值计算模型

 图 1 水箱模型 Fig. 1 Model of tank

1.2 数值计算方法

1.3 算法验证

 图 2 水箱模型及数值计算模型 Fig. 2 Model of tank and numerical calculation

 图 3 前面板和弹体破坏形貌及数值仿真结果 Fig. 3 Damage morphology of front plate and projectile in experiment and numerical simulation
2 弹体侵彻入水过程分析

1）入水阶段

2）翻转阶段

3）稳定阶段

 图 4 不同长径比弹体入水的速度随时间变化关系（正侵彻） Fig. 4 Relationship between time and velocity with different length-diameter ratios projectiles(forward penetration)

 图 5 不同攻角下时间-速度曲线 (V=1 600 m/s，h/d=4.95) Fig. 5 Curves of time-velocity at different attack angles ( V=1 600 m/s，h/d=4.95)

 图 6 初始攻角-降速比例 Fig. 6 Curve of attack angle - deceleration ratio
3 弹体破坏模式

 图 7 弹体变形形貌及曲线图（h/d=3.3, v=1 600 m/s） Fig. 7 Deformation morphology and curve of projectile（h/d=3.3, v=1 600 m/s）

 图 8 弹体的不同破坏形貌 Fig. 8 Different damage morphologies of the projectile body

 图 9 弹体入水受力示意图 Fig. 9 Schematic diagram of force of projectile body entering water
 $\frac{\left|{F}_{{ay}}\right|}{\left|{N}_{Y}\right|}+\frac{\left|M\right|}{\left|{M}_{Y}\right|}>1 。$ (6)

 图 10 15°攻角弹体入水形貌变化 Fig. 10 Deformation morphology of projectile body entering water at 15° angle of attack
4 弹体姿态和弹道轨迹

 图 11 正侵彻下弹体偏转角度曲线 Fig. 11 Deflection angle curve of projectile body under forward penetration

 图 12 弹体姿态角随时间变化关系（h/d=4.95，v=1 600 m/s） Fig. 12 Variation relation of projectile attitude angle with time（h/d=4.95，v=1 600 m/s）

 图 13 攻角-偏移距离 Fig. 13 Curve of attack angle - deflection distance

 图 14 初始攻角-偏移距离曲线图 Fig. 14 Curve of attack angle - maximum deflection distance
5 结　语

1）弹体入水可以分为入水阶段、翻转阶段和稳定阶段。即弹体在入水后会产生姿态翻转，经过一段时间后弹体姿态趋于稳定。攻角较小时，弹体在翻转阶段会有二次偏转现象，而攻角较大时只产生一次偏转。

2）攻角越大，弹体的衰减速率越快。弹体高速情况下攻角对弹速的影响较小，低速时攻角对弹速有显著影响。且长杆弹对攻角的变化更为敏感

3）弹体非理想入水会产生很强的冲击力使弹体产生非对称墩粗、侵蚀。低速时，弹体变形以墩粗为主；中高速时，弹体发生蘑菇头状，而高速时，弹体发生很大的侵蚀及墩粗变形。当速度达到一定值时，弹体甚至发生整体塑性弯曲变形。

4）长径比小的弹体其破坏能力较小，弹道偏航较小，但姿态偏转较大；长径比较大的弹体破坏能力强，弹体姿态偏转较小，但弹道偏航距离较大。

 [1] 朱锡, 张振华, 刘润泉, 等. 水面舰艇舷侧防雷舱结构模型抗爆试验研究[J]. 爆炸与冲击, 2004, 24(2): 133-139. ZHU X, ZHANG Z H, LIU R Q, et al. Experimental study on the explosion resistance of cabin near shipboard of surface warship subjected to underwater contact explosion[J]. Explosion and Shock waves, 2004, 24(2): 133-139. DOI:10.3321/j.issn:1001-1455.2004.02.006 [2] 卢芳云, 李翔宇, 林玉亮, 战斗部结构与原理[M], 北京: 科学出版社, 2009 [3] 张凯奇. 水下EFP及其终点效应的研究[D]. 太原: 中北大学, 2020. [4] 吴凡达. 聚能-爆破战斗部对潜艇多层壳体毁伤效应研究[D]. 太原: 中北大学, 2020. [5] 陈兴, 周兰伟, 李福明, 等. 杆式射流对充液防护结构的毁伤机理及影响因素的数值模拟[J]. 高压物理学报, 2021, 35(2): 145-155. CHEN X, ZHOU L W, LI F M. et al. Numerical simulation on damage mechanism and influencing factors of JPC shaped charge on liquid-filled defensive structure[J]. Chinese Journal of High Pressure Physics, 2021, 35(2): 145-155. DOI:10.11858/gywlxb.20200626 [6] 王雅君, 李伟兵, 王晓鸣, 等. EFP水中飞行特性及侵彻间隔靶的仿真与试验研究[J]. 含能材料, 2017, 25(6): 459-465. WANG Y J, LI W B, WANG X M, et al. Numerical simulation and experimental study on flight characteristics and penetration against spaced targets of EFP in water[J]. Chinese Journal of Energrtic Materials, 2017, 25(6): 459-465. DOI:10.11943/j.issn.1006-9941.2017.06.003 [7] 吴子奇. 弹目结合的反舰导弹对目标舰船靶标侵彻毁伤研究[D]. 哈尔滨: 哈尔滨工程大学, 2019. [8] 杨莉, 张庆明, 巨圆圆. 爆炸成型弹丸对含水复合装甲侵彻的实验研究[J]. 北京理工大学学报, 2009, 29(3): 197-200. YANG L, ZHANG Q M, JU Y Y. Experimental study on the penetration of explosively formed projectile against water-partitioned armor[J]. Transactions of Beijing Institute of Technology, 2009, 29(3): 197-200. DOI:10.15918/j.tbit1001-0645.2009.03.007 [9] 许通通. 串联聚能装药水下作用研究[D]. 北京: 北京理工大学, 2017. [10] SONG Z J, DUAN W Y, XU G D, et al. Experimental and numerical study of the water entry of projectiles at high oblique entry speed[J]. Ocean Engineering, 2020, 211: 107574. DOI:10.1016/j.oceaneng.2020.107574 [11] CHEN C , X YUAN, X LIU, et al. Experimental and numerical study on the oblique water-entry impact of a cavitating vehicle with a disk cavitator[J]. International Journal of Naval Architecture and Ocean Engineering, 2018, 11. [12] CHEN C, YUAN X, LIU X, et al. Experimental and numerical study on the oblique water-entry impact of a cavitating vehicle with a disk cavitator[J]. International Journal of Naval Architecture and Ocean Engineering, 2019, 11(1): 482-494. DOI:10.1016/j.ijnaoe.2018.09.002 [13] 李天雄. 入水弹道转向的特性研究[D]. 南京: 南京理工大学, 2020. [14] MIRZAEI M, TAGHVAEI H, ALISHAHI MM. Mathematical modeling of the oblique water-entry of cylindrical projectiles[J]. Ocean Engineering, 2020, 205: 107257. DOI:10.1016/j.oceaneng.2020.107257 [15] ALEKSEEVSKII V P. Penetration of a rod into a target at high velocity. Combustion, Explosion, and Shock Waves, 1966, 2: 63-66. [16] TATE A. A theory for the deceleration of long rods after impact. Journal of the Mechanics & Physics of Solids, 1967, 15: 387-399. [17] GAO S, LI D, HOU H, et al. Investigation on dynamic response of liquid-filled concave cell structures subject to the penetration of high-speed projectiles[J]. Thin-Walled Structures, 2020, 157(2): 107119. [18] 仲强, 侯海量, 李典, 等. 陶瓷/液舱复合结构抗侵彻机理试验研究[J]. 船舶力学, 2017, 10(21): 1282-1290. ZHONG Q, HOU H L, LI D. et al. Experimental study on anti-penetration mechanism of ceramic/fluid cabin composite structure[J]. Journal of Ship Mechanics, 2017, 10(21): 1282-1290. DOI:10.3969/j.issn.1007-7294.2017.10.012 [19] 李典, 朱锡, 侯海量, 等. 高速杆式弹体侵彻下蓄液结构载荷特性的有限元分析[J]. 爆炸与冲击, 2016, 36(1): 1-8. LI D, ZHU X, HOU H L, et al. Numerical analysis of energy Dissipation mechanism of liquid -filled structure subjected to high velocity rod projectile penetration[J]. Explosion and Shock Waves, 2016, 36(1): 1-8. DOI:10.11883/1001-1455(2016)01-0001-08 [20] 李典, 侯海量, 朱锡, 等. 高速杆式弹侵彻下蓄液结构耗能机理数值分析[J]. 海军工程大学学报, 2018, 30(2): 60-65. LI D, ZHU X, HOU H L. Finite element analysis of load characteristic of liquid- filled structure subjected to high velocity long- rod projectile penetration[J]. Journal of Naval University of Engineering, 2018, 30(2): 60-65. [21] 李典, 朱锡, 侯海量. 高速杆式弹侵彻下蓄水结构防护效能数值分析[J]. 海军工程大学学报, 2015, 27(4): 21-25+30. LI D, ZHU X, HOU H L. Numerical analysis of protective efficacy Of water-filled structure subjected to high velocity long-rod projectile penetration[J]. Journal of Naval University of Engineering, 2015, 27(4): 21-25+30. [22] 朱珠, 袁绪龙, 刘维. 柱体大攻角入水弹道建模与仿真[J]. 火力与指挥控制, 2015, 40(2): 13-18+23. ZHU Z, YUAN X L, LIU W. On modeling and simulation of cylinder droppling in water with high angle of attack[J]. Fire Control & Command Control, 2015, 40(2): 13-18+23. DOI:10.3969/j.issn.1002-0640.2015.02.005 [23] 汪振, 吴茂林, 戴文留. 大口径弹体高速入水载荷特性研究[J]. 弹道学报, 2020, 32(1): 15-22. WANG Z, WU M L, DAI K L. Study on load characteristics of high-speed water-entry of large caliber projectile[J]. Journal of Ballistics, 2020, 32(1): 15-22. [24] 吴晓光, 李典, 吴国民, 等. 高速杆式弹侵彻下蓄液结构的防护能力[J]. 爆炸与冲击, 2018, 38(1): 76-84. DOI:10.11883/bzycj-2016-0146