﻿ 基于大数据挖掘的航标作业船航行安全评估研究
 舰船科学技术  2023, Vol. 45 Issue (12): 140-143    DOI: 10.3404/j.issn.1672-7619.2023.12.027 PDF

Research on navigation safety assessment of navigation aids operation ships based on big data mining
REN Guang-li
Tianjin Maritime College, Tianjin 300350, China
Key words: big data mining     R clustering     factor analysis     navigation mark operation vessel     safety assessment
0 引　言

1 航标作业船航行安全评估方法 1.1 大数据挖掘的航行安全评估指标体系构建 1.1.1 R聚类算法的航行安全评估指标定量筛选

 ${Y_i} = \sum\limits_{j = 1}^{{n_i}} {(x_i^{(j)} - {{\bar x}_i})'(x_i^{(j)} - {{\bar x}_i})}。$ (1)

 $Y = \sum\limits_{i = 1}^k {\sum\limits_{j = 1}^{{n_i}} {(x_i^{(j)} - {{\bar x}_i})'(x_i^{(j)} - {{\bar x}_i})} }，$ (2)

1.1.2 因子分析的最大信息含量评估指标遴选

 ${x_i} = {a_{i1}}{q_1} + {a_{i2}}{q_2} + \cdots + {a_{ik}}{q_k} + {\varepsilon _i}。$ (3)

 ${w_j} = \frac{{{\eta _j}}}{{\displaystyle\sum\limits_{j = 1}^k {{\eta _j}} }}，$ (4)

 ${\eta _j} = \sum\limits_{i = 1}^K {a_{ij}^2}。$ (5)

1.2 基于模糊层次综合评估算法的航标作业船航行安全评估

 $U = \left\{ {{U_1},{U_2}, \cdots ,{U_m}} \right\} 。$ (6)

 $V = \left\{ {{v_1},{v_2}, \cdots ,{v_m}} \right\}。$ (7)

 ${G_i} = \left( {\begin{array}{*{20}{c}} {{g_{11}}}& \ldots &{{g_{1n}}} \\ \vdots & \ddots & \vdots \\ {{g_{m1}}}& \cdots &{{g_{mn}}} \end{array}} \right)。$ (8)

 ${H_i} = {W_i} \circ {G_i}。$ (9)

 $R' = \left[ \begin{gathered} {H_1} \\ {H_2} \\ \vdots \\ {H_m} \\ \end{gathered} \right] 。$ (10)

2 实验结果与分析

 图 1 评估指标筛选归一化互信息数值 Fig. 1 Normalized mutual information value of evaluation index screening

3 结　语

 [1] 黄耀倞, 许拴梅, 姜苗苗, 等. 基于博弈论组合赋权的航道水域通航安全评价[J]. 安全与环境学报, 2021, 21(6): 2430-2437. HUANG Yao-liang, XU Shuan-mei, JIANG Miao-miao, et al. Evaluation for the channel waters navigation safety based on the synthetic weighing of the game theory[J]. Journal of Safety and Environment, 2021, 21(6): 2430-2437. DOI:10.13637/j.issn.1009-6094.2020.0639 [2] 周建文, 赵炎平, 席永涛. 冰区船舶模拟航行设计与自动评估方案[J]. 中国航海, 2021, 44(1): 1-7. ZHOU Jianwen, ZHAO Yanping, XI Yongtao. Design of Teaching Program and Intelligent Operation Assessment for Polar Waters Navigation Training[J]. Navigation of China, 2021, 44(1): 1-7. DOI:10.3969/j.issn.1000-4653.2021.01.001 [3] 张叶, 任鸿翔, 王德龙. 基于KNN算法的船舶操纵智能评估系统[J]. 上海海事大学学报, 2021, 42(4): 33-38. ZHANG Ye, REN Hongxiang, WANG Delong. Intelligent evaluation system for ship maneuvering based on KNN algorithm[J]. Journal of Shanghai Maritime University, 2021, 42(4): 33-38. DOI:10.13340/j.jsmu.2021.04.006 [4] 杜沛, 任利锋, 刘善伟, 等. 基于海洋环境要素的动态航行风险评估[J]. 中国安全生产科学技术, 2021, 17(2): 171-176. DU Pei, REN Lifeng, LIU Shanwei, et al. Dynamic navigation risk assessment based on marine environmental elements[J]. Journal of Safety Science and Technology, 2021, 17(2): 171-176. [5] 赵龙飞, 姜晓轶, 孙苗, 等. 面向海运统计的AIS大数据挖掘分析研究[J]. 海洋科学, 2021, 45(12): 55-64. [6] 刘一帆, 曹辉, 郑卓, 等. 船舶主海水系统智能状态评估模型[J]. 船舶工程, 2021, 43(8): 4-9,72. DOI:10.13788/j.cnki.cbgc.2021.08.02 [7] 薛彦卓, 周莹, 鲁阳, 等. 基于模糊AHP-DEMATEL的北极冰区船舶冰困风险评价[J]. 哈尔滨工程大学学报, 2022, 43(7): 944-949,992. XUE Yanzhuo, ZHOU Ying, LU Yang, et al. Risk assessment of ships stuck in ice in Arctic ice area based on fuzzy AHP-DEMATEL[J]. Journal of Harbin Engineering University, 2022, 43(7): 944-949,992.