﻿ 多船并行航行轨迹精准控制算法研究
 舰船科学技术  2023, Vol. 45 Issue (12): 128-131    DOI: 10.3404/j.issn.1672-7619.2023.12.024 PDF

Research on accurate control algorithm for parallel navigation trajectories of multiple ships
CHEN Ling-ping, ZHANG Zhen-Hua
Guilin Institue of Information Technology, Guilin 541004, China
Abstract: In order to accurately control the ship sailing in accordance with the expected trajectory in the case of multi-ship parallel sailing, the precise control algorithm of multi-ship parallel sailing trajectory is studied. After analyzing the position and speed information as well as the dynamic control quantity information, the trajectory control method was studied from the angle of ship roll torque and propeller speed adjustment. The current position and speed information and expected position and information of ships that need to control the trajectory are taken as the control samples of the multi-ship parallel navigation trajectory control algorithm based on position and speed adjustment. After calculating the error values of the current position and speed, the fuzzy control algorithm adjusts three control parameters of the navigation trajectory controller, and outputs the position control quantity and speed control quantity. As the control quantity of ship yaw torque and propeller speed, the precise control of multi-ship parallel sailing trajectory is realized. The experimental results show that the multi-ship parallel sailing position is consistent with the desired position and sailing speed under ideal conditions. In bad working conditions, the X axis position error and Y axis position error of the multi-ship parallel sailing trajectory are both less than 0.2 m, indicating accurate trajectory control results.
0 引　言

1 多船并行航行轨迹控制 1.1 多船并行航行模型

 \left\{\begin{aligned} & \underset{t\to \infty }{\mathrm{lim}}\Vert {\phi }_{j}\left(t\right)-{\phi }_{Z}\left(t\right)\Vert =0 ，\\ & \underset{t\to \infty }{\mathrm{lim}}\Vert {V}_{j}\left(t\right)-{V}_{Z}\left(t\right)\Vert =0,j，i\in M ，\\ & \underset{t\to \infty }{\mathrm{lim}}\Vert {Q}_{j}\left(t\right)-{Q}_{i}\left(t\right)-{s}_{ji}\Vert =0。\end{aligned}\right. (1)

 \left\{ \begin{aligned} & {MU = {\sigma _U}U + {\sigma _U}{U^2} + G} ，\\ & {M\left( {\ddot v + Us} \right) = {\psi _{\ddot v}} + {\psi _{U\ddot v}}U\ddot v + {\psi _{Us}}Us + }{\psi _{\ddot v\left| {\ddot v} \right|}}\ddot v\left| {\ddot v} \right|，\\ & {Ls = {\vartheta _s}s + {\vartheta _{U\ddot v}}U\ddot v + {\vartheta _{Us}}Us + {\vartheta _{\ddot v\left| {\ddot v} \right|}}\ddot v\left| {\ddot v} \right| + {{Q'}_V}} 。\end{aligned} \right. (2)

1.2 基于位置与速度调节的多船并行航行轨迹控制

 图 1 基于位置与速度调节的多船并行航行轨迹控制算法设计框图 Fig. 1 Design block diagram of multi ship parallel navigation trajectory control algorithm based on position and speed adjustment

 ${Q'_V} = {\dot Q_e} + {K_V}\beta + {K_Q}\dot \beta。$ (3)

 $\dot \beta = {Q_e} - Q 。$ (4)

 $\beta = {V_e} - V 。$ (5)

 ${Q_e} = {K_P}\dot \beta \left( t \right) + {K_I}\sum\limits_{i = 0}^t {\dot \beta \left( t \right)\bar T + } {K_D}\frac{{\dot \beta \left( t \right) - \dot \beta \left( {t - 1} \right)}}{{\bar T}}，$ (6)

 ${V_e} = {K_P}\beta \left( t \right) + {K_I}\sum\limits_{i = 0}^t {\beta \left( t \right)\bar T + } {K_D}\frac{{\beta \left( t \right) - \beta \left( {t - 1} \right)}}{{\bar T}}。$ (7)

 图 2 输入输出变量的隶属度函数 Fig. 2 Membership function of input and output variables
2 仿真测试 2.1 相关参数设置

2.2 轨迹控制效果测试

 图 3 多船并行航行位置的控制效果 Fig. 3 Control effect of parallel navigation position for multiple ships

 图 4 跟随船航行速度变化 Fig. 4 Speed change of follower ship

 图 5 航行位置X轴误差值 Fig. 5 Navigation position X-axis error value

 图 6 航行位置Y轴误差值 Fig. 6 Navigation position Y-axis error value
3 结　语

 [1] 马洪涛. 具有预设性能的船舶轨迹跟踪动态面控制[J]. 船舶工程, 2020, 42(12): 93-97+130. DOI:10.13788/j.cnki.cbgc.2020.12.017 [2] 焦建芳, 包端华, 胡正中. 基于预设性能的自适应神经网络船舶轨迹跟踪[J]. 华中科技大学学报(自然科学版), 2022, 50(4): 77-82. [3] 冯辉, 胡胜, 余文曌, 等. 基于有限时间引导律的欠驱智能船舶循迹控制[J]. 北京航空航天大学学报, 2021, 62(1): 133-144. DOI:10.13700/j.bh.1001-5965.2020.0561 [4] 祁林, 渠俊锋, 司文杰, 等. 基于RBF神经网络的水面船舶轨迹跟踪控制[J]. 船舶工程, 2021, 43(1): 95-101+118. DOI:10.13788/j.cnki.cbgc.2021.01.17 [5] 刘义, 曾智华, 邹早建, 等. 基于积分视线法的船舶自抗扰轨迹跟踪控制研究[J]. 中国造船, 2021, 62(1): 133-144. LIU Yi, ZENG Zhihua, ZOU Zaojian, et al. Trajectory Tracking Control of Ships with Active Disturbance Rejection Based on Integral Line-of-Sight Method[J]. Shipbuilding of China, 2021, 62(1): 133-144. DOI:10.3969/j.issn.1000-4882.2021.01.013