﻿ 移动互联技术在多船舶通信目标定位中的应用
 舰船科学技术  2023, Vol. 45 Issue (12): 118-121    DOI: 10.3404/j.issn.1672-7619.2023.12.022 PDF

Application of mobile interconnection technology in target localization of multiple ships communication
JIA Xue-song
School of Information and Control Engineering, Shenyang Urban Construction University, Shenyang 110167, China
Abstract: Ship communication target positioning provides technical support for ship navigation, obstacle avoidance, etc. In order to ensure accurate positioning of ship communication targets, this study investigates the application method of mobile interconnection technology in multi ship communication target positioning. This method uses the distance calculation method of adjacent ship communication nodes based on mobile interconnection technology to obtain the distance between ship communication nodes. By calculating the relationship between ship communication node distance and distance error, and deriving it, the distance error compensation amount is obtained. The distance error of multiple ship communication nodes is compensated based on this compensation result, using a single mobile beacon based multi ship communication target localization method to achieve multiple ships communication target localization. The experimental results show that this method can effectively calculate the distance of ship communication nodes and compensate for their errors. It can also effectively locate communication targets in different multi ship environments and has good application effects.
Key words: mobile internet technology     multi ships communication     target positioning     node distance     error compensation
0 引　言

1 移动互联技术的多船舶通信目标定位方法 1.1 基于移动互联技术的相邻船舶通信节点距离计算

 ${P_r}(d) = {P_t} - \varOmega ({d_0}) - 10n\lg (d/{d_0}) + {N_\sigma }。$ (1)

${G_t}$ 为船舶移动互联发射节点的天线增益， ${G_r}$ 为接收天线增益，则无线电自由空间传输模型表达式如下：

 $\varOmega ({d_0}) = - 10\lg \left[ {\frac{{{\lambda ^2}}}{{(4\text{π} )2d_0^2\eta }}} \right]。$ (2)

 ${P_r}({d_0}) = {P_t} - \Omega ({d_0}) ，$ (3)

 ${P_r}(d) = {P_r}({d_0}) - 10n\lg (d/{d_0}) + {N_\sigma }，$ (4)

 ${P_r}(d) = \kappa - 10n\lg d 。$ (5)

 $\kappa = {P_r}({d_0}) - {N_\sigma } ，$ (6)

 $10n\lg d = \kappa - {P_r}(d) 。$ (7)

 $10n\lg {d_{\max }} = \kappa - {P_{\min }} 。$ (8)

 $n = \left( {\kappa - {P_{\min }}} \right)/10n\lg {d_{\max }} ，$ (9)

 $d = d_{\max }^{\frac{{\kappa - {P_r}(d)}}{{\kappa - {P_{\min }}}}} \approx {r^{\frac{{\kappa - {P_r}(d)}}{{\kappa - {P_{\min }}}}}} 。$ (10)

1.2 相邻船舶通信节点距离误差补偿

 $\phi (d) = \varepsilon d + \zeta。$ (11)

$Z(\varepsilon ,\zeta )$ 为误差系数函数，其表达式如下：

 $Z(\varepsilon ,\zeta ) = \sum\limits_{i = 1}^n {{{\left[ {\varepsilon {d_i} + \zeta - \phi ({d_i})} \right]}^2}} 。$ (12)

 $\left\{ \begin{gathered} \frac{{\partial Q}}{{\partial \varepsilon }} = 2\sum\limits_{i = 1}^n {{d_i}\left[ {\varepsilon {d_i} + \zeta - \phi ({d_i})} \right] = 0}，\\ \frac{{\partial Q}}{{\partial \zeta }} = 2\sum\limits_{i = 1}^n {\left[ {\varepsilon {d_i} + \zeta - \phi ({d_i})} \right] = 0}。\\ \end{gathered} \right.$ (13)

 \left\{ \begin{aligned} & \varepsilon = \left( {\sum\limits_{i = 1}^n {{d_i}\phi ({d_i})} - \frac{1}{n}\left[ {\sum\limits_{i = 1}^n {{d_i}} } \right]\left[ {\sum\limits_{i = 1}^n {\phi \left( {{d_i}} \right)} } \right]} \right)/\\ & \quad \left[ {\sum\limits_{i = 1}^n {d_i^2 - \frac{1}{n}{{\left[ {\sum\limits_{i = 1}^n {{d_i}} } \right]}^2}} } \right] ，\\ & \zeta = \left[ {\sum\limits_{i = 1}^n {\phi \left( {{d_i}} \right)} - \varepsilon \sum\limits_{i = 1}^n {{d_i}} } \right]/n 。\end{aligned} \right. (14)

 ${\tilde d_i} = {d_i} - \phi ({d_i}) 。$ (15)
1.3 基于单移动信标的多船舶通信目标定位方法

 ${U_i} = \left[ {x_i^{\min },x_i^{\max }} \right] \times \left[ {y_i^{\min },y_i^{\max }} \right]。$ (16)

 ${U_i} \to {U_i}\mathop \cap \limits_{k \in K} \left[ {x_{\min }^k - r,x_{\max }^k + r} \right] \times \left[ {y_{\min }^k - r,y_{\max }^k + r} \right] 。$ (17)

 ${U_i} \to {U_i} \cap \left[ {{x_a} - s,{x_a} + s} \right] \times \left[ {{y_a} - s,{y_a} + s} \right]。$ (18)

 ${U_i} \to {U_i} - {U_{neg}}，$ (19)

 ${U_{neg}} = \left[ {{x_a} - \frac{{{Q_{neg}}}}{2},{x_a} + \frac{{{Q_{neg}}}}{2}} \right] \times \left[ {{y_a} - \frac{{{Q_{neg}}}}{2},{y_a} + \frac{{{Q_{neg}}}}{2}} \right]。$ (20)

 $O(x,y) = PD{F_{RSSI}}(({x_i},{y_i}),({x_a},{y_a}))，$ (21)

2 实验结果与分析

 图 1 多船舶通信目标定位实验结果 Fig. 1 Experimental results of multiple ships communication target localization
3 结　语

 [1] 简杰, 朱志宇. 基于加权信息增益的并行融合AUV协同定位方法[J]. 中国舰船研究, 2022, 17(4): 79-91. JIAN Jie, ZHU Zhiyu. A Parallel fusion method for AUV cooperative localization based on weighted information gain[J]. Chinese Journal of Ship Research, 2022, 17(4): 79-91. [2] 李宗凌, 汪路元, 蒋帅, 等. 超轻量网络的SAR图像舰船目标在轨提取[J]. 遥感学报, 2021, 25(3): 765-775. LI Zongling, WANG Luyuan, JIANG Shuai, et al. On orbit extraction method of ship target in SAR images based on ultra-lightweight network[J]. Journal of Remote Sensing, 2021, 25(3): 765-775. [3] 刘亚琴, 杨士莪, 张海刚, 等. 利用辐射噪声对舰船进行定位[J]. 哈尔滨工程大学学报, 2021, 42(7): 921-927. LIU Yaqin, YANG Shi'e, ZHANG Haigang, et al. Localization of ship using radiated noise[J]. Journal of Harbin Engineering University, 2021, 42(7): 921-927. DOI:10.11990/jheu.201906076 [4] 张啸尘, 赵建森, 王胜正, 等. 基于YOLOv3算法的船舶双目视觉检测与定位方法[J]. 上海海事大学学报, 2021, 42(1): 26-32. ZHANG Xiaochen, ZHAO Jiansen, WANG Shengzheng, et al. Binocular vision detection and positioning method for ships based on YOLOv3 algorithm[J]. Journal of Shanghai Maritime University, 2021, 42(1): 26-32. DOI:10.13340/j.jsmu.2021.01.005 [5] 孙忠镇, 戴牧宸, 雷禹, 等. 基于级联网络的复杂大场景SAR图像舰船目标快速检测[J]. 信号处理, 2021, 37(6): 941-951. SUN Zhongzhen, DAI Muchen, LEI Yu, et al. Fast Detection of Ship Targets for Complex Large-scene SAR Images Based on a Cascade Network[J]. Journal of Signal Processing, 2021, 37(6): 941-951. DOI:10.16798/j.issn.1003-0530.2021.06.005 [6] 马啸, 邵利民, 金鑫, 等. 基于改进Mask R-CNN的可见光图像中舰船目标检测方法[J]. 北京理工大学学报, 2021, 41(7): 734-744. MA Xiao, SHAO Limin, JIN Xin, et al. Ship Target Detection in Optical Images Based on Improved Mask R-CNN[J]. Transactions of Beijing Institute of Technology, 2021, 41(7): 734-744.