﻿ 基于响应面法的矢量水听器壳体优化设计
 舰船科学技术  2023, Vol. 45 Issue (12): 107-111    DOI: 10.3404/j.issn.1672-7619.2023.12.020 PDF

Optimal design of pressure vector hydrophone shell based on response surface method
FU Chang, GE Song, CHEN Wei-hao, XU Yu-yue
Shanghai Marine Electronic Equipment Research Institute, Shanghai 201108, China
Abstract: With the development of ocean exploration to the deep sea, the large depth water pressure resistant vector hydrophone has become an important direction in the future. The design of vector hydrophone should also meet the requirements of small size and low density. In view of the relative contradiction between large water pressure strength and small size and low density, this paper establishes a three-dimensional model of the hydrophone pressure hull in the finite element software, solves its internal stress distribution, analyzes the pressure failure form of the hull, analyzes the sensitivity of each design variable to the target parameters by using the response surface method, and optimizes the shell structure size. After optimization, the hydrophone density is reduced from 1.25 g/cm3 to 1.03 g/cm3, It can meet the working requirements of 20 MPa water pressure and achieve the ideal design effect.
Key words: hydraulic strength     lightweight     response surface method     optimal design
0 引　言

1 水听器设计与壳体耐压仿真 1.1 矢量水听器设计原理

1.2 矢量水听器设计选型

 图 1 矢量水听器内部结构图 Fig. 1 Internal structure diagram of vector hydrophone

 图 2 壳体结构尺寸示意图 Fig. 2 Internal structure diagram of vector hydrophone

1.3 壳体耐压仿真

 图 3 壳体受压应力云图 Fig. 3 Pressure stress nephogram of shell

 图 4 壳体线形屈曲变形云图 Fig. 4 Deformation nephogram of shell linear buckling
2 水听器壳体优化设计

2.1 优化设计基本原理和方法

 $f(x) = f({x_1},{x_2},\cdots,{x_n})，$ (1)

 $\begin{array}{ll} {g_i}(x) \leqslant 0，& i = 1,\cdots ,m，\\ {h_j}(x) \leqslant 0，& j = 1,\cdots ,m，\end{array}$ (2)

 $x_k^l \leqslant {x_k} \leqslant x_k^u，\quad k = 1,\cdots ,n。$ (3)

 $D(x) = {\alpha _0} + \sum\limits_{i = 1}^n {{\alpha _i}} {x_i} + \sum\limits_{i = 1}^n {{\alpha _{ii}}} {x_i} + \sum\limits_{1 = i < j}^n {{\alpha _{ij}}} {x_i}{x_j} + \varepsilon 。$ (4)

2.2 优化设计建模分析 2.2.1 优化设计三要素确定

2.2.2 局部敏感度分析

 图 5 各设计变量的局部敏感度 Fig. 5 Local sensitivity of each design variable
2.2.3 响应面分析

 图 6 质量与设计变量的响应面关系 Fig. 6 Response surface between mass and design variables

 图 7 最大应力与设计变量的响应面关系 Fig. 7 Response surface between maximum stress and design variables
2.2.4 优化参数设定

 $\left\{ \begin{array}{l} 1.5\geqslant {V}_1\geqslant 4.5，\\ 1\geqslant {H}_4\geqslant 7，\\ 1\geqslant {H}_5\geqslant 7，\\ 2\geqslant {V}_7\geqslant 6。\end{array}\right.$
2.3 求解及结果评估

 图 8 优化后的壳体受压应力云图 Fig. 8 Optimized pressure stress nephogram of shell

2.4 静水压力试验

3 结　语

1）随着工作水深的增大，水听器壳体会发生强度失效而不是稳定性失效。

2）尺寸V1H4变大会导致壳体质量大幅增大，最大应力明显减小，H5则刚好相反，尺寸V7则对二者的影响较小。

3）壳体尺寸优化后，水听器的密度从原来的1.25 g/cm3降低至1.03 g/cm3，接近于水下零浮力。

 [1] 杨德森, 洪连进. 矢量水听器原理及应用引论[M]. 北京: 科学出版社, 2009. [2] 王文龙, 孙芹栋, 王超, 等. 大深度复合同振式矢量水听器设计[J]. 国防科技大学学报, 2021, 43(03): 149-158. DOI:10.11887/j.cn.202103018 [3] 葛松, 付昌, 卞加聪, 等. 用于水下目标监测的低频同振式矢量水听器研制[J]. 无损检测, 2022, 44(1): 70-73. [4] 陈洪娟, 杨士莪, 王智元, 等. 同振式矢量传感器设计方法的研究[J]. 声学技术, 2005, 24(2): 80-83. [5] 朱保国. 压力容器设计知识[M]. 北京: 化学工业出版社, 2016. [6] 贾富志. 三维同振球型矢量水听器的特性及其结构设计[J]. 应用声学, 2001, 20(4): 15-20. [7] 高杰. 深海球形耐压壳体力学特性及试验研究[D]. 镇江: 江苏科技大学, 2017. [8] 解可新, 韩建. 最优化方法[M]. 天津: 天津大学出版社, 2004. [9] 孙靖民, 梁迎春. 机械优化设计[M]. 北京: 机械工业出版社, 2012. [10] 曾漾, 周俊, 沈志远, 等. 基于响应面法的复合材料舱壁结构优化设计[J]. 重庆大学学报, 2020(6): 82-89. [11] DI Meo C A, WAKEFIELD J R, CRAY S C. A new device for sampling small volumes of water from marine micro-environments[J]. Deep Sea Research Part I:Oceanographic Research Papers, 1999, 46(7): 1299. [12] 孟巧荣, 高立志, 王勇, 等. 基于SolidWorks与Workbench的纤维过滤器壁厚优化设计[J]. 太原理工大学学报, 2020, 51(4): 610-614. DOI:10.16355/j.cnki.issn1007-9432tyut.2020.04.019