﻿ 大型邮轮泳池形状对其晃荡性能影响研究
 舰船科学技术  2023, Vol. 45 Issue (12): 31-34    DOI: 10.3404/j.issn.1672-7619.2023.12.006 PDF

Research on the influence of swimming pool shape of large cruise ship on its sloshing performance
WU Si-ying, DING Yue, HUANG Yi-ming
Shanghai Waigaoqiao Shipbuilding Co., Ltd., Shanghai 200137, China
Abstract: Aiming at the sloshing problem of large cruise swimming pool, the sloshing of swimming pools with different shapes is analyzed based on CFD software Fluent, and the factors affecting the sloshing of swimming pool are studied. In order to obtain accurate results, potential flow theory and viscous flow theory are used for cruise hydrodynamic forces and swimming pool sloshing respectively. The results show that the sloshing of swimming pool can be simulated efficiently and accurately by combining the potential flow and viscous flow theory. For rectangular, circular and elliptical swimming pools, the greater the transverse width, the greater the transverse force caused by swimming pool sloshing, and the higher the maximum height of liquid level. Under the same sea conditions, the swimming pools with prismatic and elliptical sections have the smallest sloshing range, which can improve the comfort of the swimming pool in bad sea conditions.
Key words: cruise     swimming pool     comfort     CFD
0 引　言

1 邮轮水动力分析 1.1 模型建立

 图 1 船体模型 Fig. 1 Model of ship hull

1.2 计算结果

 图 2 横浪作用下邮轮横摇RAO Fig. 2 Rolling RAO under transverse waves

 $\theta = 0.04 \cdot \cos (0.5t){\text{rad}}/{\text{s}}。$ (1)

2 泳池晃荡分析

2.1 基础理论 2.1.1 流体的运动控制方程

 $\frac{{\partial \rho }}{{\partial t}} + \frac{{\partial (\rho {v_x})}}{{\partial x}} + \frac{{\partial (\rho {v_y})}}{{\partial y}} + \frac{{\partial (\rho {v_z})}}{{\partial z}} = 0 ，$ (2)

 $\left\{ \begin{split} & \frac{{\partial (\rho {v_x})}}{{\partial t}} + \nabla \cdot (\rho {v_x}\nu ) = - \frac{{\partial p}}{{\partial x}} + \frac{{\partial {\tau _{xx}}}}{{\partial x}} + \frac{{\partial {\tau _{yx}}}}{{\partial y}} + \frac{{\partial {\tau _{zx}}}}{{\partial z}} + {f_x} ，\\ & \frac{{\partial (\rho {v_y})}}{{\partial t}} + \nabla \cdot (\rho {v_y}\nu ) = - \frac{{\partial p}}{{\partial y}} + \frac{{\partial {\tau _{xy}}}}{{\partial x}} + \frac{{\partial {\tau _{yy}}}}{{\partial y}} + \frac{{\partial {\tau _{zy}}}}{{\partial z}} + {f_y} ，\\ & \frac{{\partial (\rho {v_z})}}{{\partial t}} + \nabla \cdot (\rho {v_z}\nu ) = - \frac{{\partial p}}{{\partial z}} + \frac{{\partial {\tau _{xz}}}}{{\partial x}} + \frac{{\partial {\tau _{yz}}}}{{\partial y}} + \frac{{\partial {\tau _{zz}}}}{{\partial z}} + {f_z} 。\end{split} \right.$ (3)

2.1.2 强迫运动方法

1）指定加速度。Fluent中可以指定流体运动加速度，并将加速度以体积力的形式施加到计算域中的流体上。然而Fluent并没有提供变加速度的直接添加，若要计算变加速度情况，则需要手工分段计算。

2）指定计算域速度。将加速度或位移数据转化为速度添加到计算域上。可以通过DEFINE_ZONE_MOTION宏或PROFILE文件的方式进行指定。2021版Ansys-Fluent可通过函数直接定义域的运动此方式要比加速度方式更加灵活，本文采用此方法。

2.2 数值计算 2.2.1 模型建立

 图 3 计算域网格模型 Fig. 3 Computational domain
2.2.2 计算结果

 图 4 矩形泳池计算结果 Fig. 4 Calculation results of rectangular pool

3 不同形状泳池晃荡对比

 图 5 不同形状泳池横向力曲线 Fig. 5 Transverse force of swimming pools with different shapes

 图 6 不同形状泳池晃荡结果 Fig. 6 Surface height of swimming pools with different shapes

1）受力曲线总体上变化规律一致，均在晃动开始6～8 s后达到最大值。稳定后矩形、棱形与椭圆受到横向力较小，圆形最大。

2）液面变化曲线波动规律性较差，这主要是因为泳池整体晃荡较小任何一点小的扰动都会引起液面高度发生变化。对4种形状液面高度峰值进行分析，菱形和圆形液面升高较大，且升高最大值均出现在横向最远点，容易出现溢出泳池的现象，造成乘客的不适与危险。

4 结　语

1）通过势流与粘流理论的结合可快速准确得到泳池或液舱晃荡细节；

2）3级海况下大型邮轮泳池晃荡不明显，可视情况开放；

3）横向大尺度是引起横向冲击力的主要原因，纵截面面积沿横向变化情况是导致液面升高的主要因素；

4）矩形与椭圆泳池舒适性最好，结构布置允许时尽量采用。

 [1] 姜杰. 大型邮轮外观设计的本土化研究[D]. 武汉: 武汉理工大学, 2018. [2] 吴卫国, 潘长学. 大型豪华邮轮设计研发关键技术探析[J]. 船舶工程, 2020, 42(1): 18-21. [3] 王俊, 林贤恒. 邮轮游泳池设计初探[J]. 广船科技, 2020, 40(2): 18-22. DOI:10.3969/j.issn.2095-4506.2020.02.005 [4] NASAR T, SANNASIRAJ S A, SUNDAR V. Motion responses of barge carrying liquid tank[J]. Ocean Engineering, 2010, 37(10): 935-946. DOI:10.1016/j.oceaneng.2010.03.006 [5] 卫志军, 岳前进, 阮诗伦, 等. 矩形液舱晃荡冲击载荷的试验机理研究[J]. 船舶力学, 2012, 16(8): 885-892. DOI:10.3969/j.issn.1007-7294.2012.08.007 [6] JIANG S C, TENG, B, BAI W, et al. Numerical simulation of coupling effect between ship motion and liquid sloshing under wave action[J]. Ocean Engineering, 2015, 108: 140-154. DOI:10.1016/j.oceaneng.2015.07.044 [7] 丁刚. 基于FLUENT的破舱船舶溢油的数值模拟[D]. 武汉: 武汉理工大学, 2010. [8] 徐博, 姜胜超, 刘浩, 等. 基于STAR-CCM+的液舱晃荡数值研究[C]//中国海洋工程学会. 第十九届中国海洋(岸)工程学术讨论会论文集(上). 中国海洋工程学会: 中国海洋学会海洋工程分会, 2019: 178−183. [9] STEPHEN J J, SANNASIRAJ S A, SUNDAR V. Numerical modeling of nonlinear sloshing of liquid in a container coupled with barge subjected to regular excitation[J]. Journal of Hydrodynamics, 2019, 31(5): 999-1010. DOI:10.1007/s42241-019-0073-6