﻿ 船舶摆线推进器水动力性能仿真研究
 舰船科学技术  2023, Vol. 45 Issue (12): 14-19    DOI: 10.3404/j.issn.1672-7619.2023.12.003 PDF

1. 江苏科技大学 船舶与海洋工程学院，江苏 镇江 212000;
2. 中国船舶信息中心，北京 100101;
3. 江南造船(集团)有限责任公司，上海 201913

Simulation study on hydrodynamic performance of ship cycloidal propeller
CHEN Wen-wen1, LV Feng1, CHEN Lian2, LIU Jia-hao3, ZHANG Feng1
1. School of Ship and Ocean Engineering, Jiangsu University of Science and Technology, Zhenjiang 212000, China;
2. China Ship Information Center, Beijing 100101, China;
3. Jiangnan Shipbuilding (Group) Co., Ltd., Shanghai 201913, China
Abstract: In order to explore the influence of different parameters on the hydrodynamic performance of cycloid propeller, NACA 3412 airfoil is selected as the propeller blade model and CFD simulation technology is used to simulate the hydrodynamic performance of cycloid propeller under limited conditions to verify the effectiveness of simulation method. Based on this, the independently selected cycloid propeller model is taken as the research object. The effects of different advance coefficients and eccentricities on hydrodynamic performance of cycloid propeller were studied, and force variation laws of blades under different initial phases were obtained, which provides reference for hydrodynamic performance analysis and structural optimization of cycloid propeller.
Key words: cycloidal propeller     hydrodynamic performance     eccentricity     speed coefficient
0 引　言

1 摆线推进器的工作原理

 图 1 摆线推进器叶片运动原理 Fig. 1 Motion principle of cycloid propeller blades

 图 2 摆线推进器叶片轨迹示意图 Fig. 2 Geoid propeller blade track schematics

 $\theta = \alpha + \beta，$ (1)

 $\beta = \arccos \left\{ {\frac{{e + \cos \theta }}{{\sqrt {1 + {e^2} + 2e\cos \theta } }}} \right\}。$ (2)

 $\alpha ' = - \omega \frac{{{e^2} + e\cos \theta }}{{1 + {e^2} + 2e\cos \theta }}。$ (3)

 图 3 摆线推进器的运动模型 Fig. 3 Motion model of cycloid propeller
2 数学模型 2.1 三维模型

 图 4 叶片翼型及推进器几何模型 Fig. 4 Geometric model of blade airfoil and propeller

2.2 控制方程

 $\frac{{\partial }u}{{\partial}x} + \frac{{\partial} v}{{\partial} y} + \frac{{\partial}w}{{\partial} z} = 0,$ (4)
 \left. \begin{aligned} & \frac{{\partial u}}{{\partial t}} + \frac{{\partial \left( {{u^2}} \right)}}{{\partial x}} + \frac{{\partial \left( {uv} \right)}}{{\partial y}} + \frac{{\partial \left( {uw} \right)}}{{\partial z}} = X - \frac{1}{\rho }\frac{{\partial p}}{{\partial x}} + v{\nabla ^2}u\\ & \frac{{\partial v}}{{\partial t}} + \frac{{\partial \left( {vu} \right)}}{{\partial x}} + \frac{{\partial \left( {{v^2}} \right)}}{{\partial y}} + \frac{{\partial \left( {vw} \right)}}{{\partial z}} = Y - \frac{1}{\rho }\frac{{\partial p}}{{\partial x}} + v{\nabla ^2}v\\ & \frac{{\partial w}}{{\partial t}} + \frac{{\partial \left( {wu} \right)}}{{\partial x}} + \frac{{\partial \left( {wv} \right)}}{{\partial y}} + \frac{{\partial \left( {{w^2}} \right)}}{{\partial z}} = Z - \frac{1}{\rho }\frac{{\partial p}}{{\partial x}} + v{\nabla ^2}w \end{aligned} \right\} 。

3 计算域和网格 3.1 边界条件及初始条件

 图 5 计算域示意图 Fig. 5 Calculation domain schematics

3.2 网格划分

 图 6 叶片加密区网格划分 Fig. 6 Grid division in blade-encrypted area
4 计算结果与分析

 $T = \sum\limits_{i = 1}^z {\frac{1}{{2{{\text{π}}} }}} \int_0^{2{\text{π}} } {{t_i}} \left( \theta \right){\rm{d}}\theta 。$ (6)

 $Q = \sum\limits_{i = 1}^z {\frac{1}{{2{\text{π}} }}} \int_0^{2{\text{π}} } {{q_i}\left( \theta \right)} {\rm{d}}\theta 。$ (7)

 ${K_T} = \frac{T}{{\rho {n^2}{D^3}L}}，$ (8)
 ${K_Q} = \frac{Q}{{\rho {n^2}{D^4}L}}，$ (9)
 $\eta = \frac{J}{{2{\text{π}} }}{\text{ }}\frac{{{K_T}}}{{{K_Q}}}。$ (10)

 $J = \frac{{{V_A}}}{{nD}} 。$ (11)
4.1 精度验证

 图 7 计算结果与实验结果对比下的主推力系数 Fig. 7 Main thrust coefficient compared with experimental results

4.2 数值模拟分析

 图 8 不同偏心率下的推力系数曲线 Fig. 8 Thrust coefficient curves at different eccentricities

 图 9 不同偏心率下的转矩系数曲线 Fig. 9 Torque coefficient curves at different eccentricities

 图 10 e=0.7时各叶片瞬时推力变化曲线 Fig. 10 Transient thrust curve of each blade at e=0.7

 图 11 e=0.7时各叶片瞬时转矩变化曲线 Fig. 11 Transient torque curve of each blade at e=0.7

5 结　语

1） 进速系数一定时，偏心率越大，推进器的KTKQ值越大；偏心率一定时，进速系数越大，推进器的KTKQ越小。

2） 不同初相位下叶片所受的推力和转矩变化规律相同，只是相差了一个初始相位角，同时由于叶片之间的流场存在相互干扰以及叶片自身旋转的差异性，各推力峰值会产生一定的波动，但整体的变化趋势依旧相同。

 [1] 张洪雨. 摆线推进器水动力性能研究[D]. 哈尔滨: 哈尔滨工程大学, 1999. [2] 段瑞. 摆线式推进器水动力性能试验研究[D]. 哈尔滨: 哈尔滨工程大学, 2008. [3] 陈先进. 摆线推进器结构及性能优化研究[D]. 杭州: 浙江大学, 2013. [4] 谷口中. トロコィダルプロペテ江关する研究[D]. 东京: 东京大学, 1960. [5] NAKONECHNY BV. Experimental performance of a six-bladed vertica axis propeller [J]. 1961. [6] 朱典明. 摆线推进器的理论计算方法[J]. 哈尔滨船舶工程学院学报, 1982(1): 1-27. [7] 顾欣星. 全向直翼推进器水动力性能研究及优化[D]. 杭州: 浙江大学, 2016. [8] 施培丽, 邵雪明. 高密实度H型风力机气动性能的数值分析[J]. 机电工程, 2013, 30(3): 277−280+291. [9] 章丽丽, 李锋, 孙寒冰, 等. 船舶摆线推进器敞水性能优化仿真研究[J]. 计算机仿真, 2017, 34(3): 19−24.