﻿ 喷水推进船舶二维控制手柄优化设计
 舰船科学技术  2023, Vol. 45 Issue (11): 181-185    DOI: 10.3404/j.issn.1672-7619.2023.11.038 PDF

1. 海军装备部驻上海地区第八军事代表室，上海 200011;
2. 中国船舶及海洋工程设计研究院，上海 200011

Optimal design of waterjet propulsion ship two-dimensional control handle
CHEN Ying1, ZHAO Nan1, MENG Kun-yu2
1. Eighth Military Representative Office of Navy Equipment Department in Shanghai, Shanghai 200011, China;
2. Marine Design and Research Institute of China, Shanghai 200011, China
Abstract: This paper focus on the function optimization design of the two-dimensional control handle that is commonly used on the waterjet propulsion ship. By improving the hardware structures and the software control strategies of the handle control system, we have achieved serval control functions under special navigation environment such as accurate steering control in narrow channel, running on the multi-condition propulsion and emergency stop at high speed, etc. The optimized handle system was simulated through the Simulink platform and the results meet the design requirement as expected. This system was also validated in the ship trial test, which made a good foundation for its mass application.
Key words: waterjet propulsion     two-dimensional handle     simulation     accurate steering
0 引　言

1 结构和控制原理

 图 1 一种二维手柄操纵单元 Fig. 1 Two-dimensional handle control unit

 图 2 手柄操舵/斗指令信号传递原理框图 Fig. 2 Principle diagram of steering and reversing control signals transmission
2 功能优化

2.1 小舵角优化

 图 3 手柄操舵曲线和刻度盘 Fig. 3 Modifications on the steering curve and handle dial
2.2 多工况优化

 图 4 手柄正常推进和紧急停车联合控制曲线 Fig. 4 Control curve under normal propulsion and emergency stop condition

 图 5 手柄指令反馈结构 Fig. 5 Instruction feedback structure
2.3 紧急停车

3 仿真分析

3.1 仿真原理

 $\left\{ \begin{gathered} (m + {m_x})\dot u - (m + {m_y})vr = {X_H} + {X_S} + {X_W}，\\ (m + {m_y})\dot v - (m + {m_x})ur = {Y_H} + {Y_S} + {Y_W}，\\ ({I_{zz}} + {J_{zz}})\dot r = {N_H} + {N_S} + {N_W} ，\\ \dot x = u\cos \psi - v\sin \psi ，\\ \dot y = u\sin \psi + v\cos \psi ，\\ \dot \psi = r 。\\ \end{gathered} \right.$ (1)

 $T = (1- t)\rho Q({V_j} - \alpha {V_0})。$ (2)

 ${P_{\text{e}}} = \frac{{\rho gQH}}{{102{\eta _{\text{p}}}}}。$ (3)

 $H = \frac{{(1 + {k_j})}}{{2g}}V_j^2 + \frac{{({k_1} -\beta )}}{{2g}}V_0^2 + {h_c} 。$ (4)

3.2 小舵角操纵仿真

 图 6 手柄优化前后的操舵指令和船舶仿真运动轨迹情况对比 Fig. 6 Comparison of steering control command and ship motion simulation trail

3.3 紧急停车仿真

 图 7 船舶停船时间和轨迹仿真对比 Fig. 7 Comparison of the simulation ship emergency stop time and motion trajectory

4 结　语

1）在不改变原有操舵习惯的前提下，手柄操舵系统优化后首向运动的偏移幅值缩减46%，大大降低了狭窄航道碰壁的风险；

2）手柄采取了多工况档位策略和“指令反馈”设计，提升了多工况的操纵体验；

3）手柄增加了“紧急停车”功能，停船距离缩短了54.5%，效果显著。

 [1] 王立祥. 喷水推进技术及工程设计[M]. 北京: 国防工业出版社, 2020: 280–303. [2] 王宇凡, 熊文, 汝福兴, 等. 采用模糊PID的喷水推进船舶控制策略研究[C]//第29届中国控制与决策会议论文集, 重庆, 中国, 2017: 5142–5147. WANG Yu-fan, XIONG Wen, RU Fu-xing, et al. Control strategy using fuzzy pid for waterjet propulsion ships[C]//Proceedings of 29th Chinese Control and Decision Conference, Chongqing, China, 2017: 5142–5147. [3] 龚征华, 龚秀军, 沈国海. 基于角度传感器的水动力装置水翼控制系统[J]. 船舶, 2006(4): 12-16. GONG Zheng-hua, GONG Xin-jun, SHEN Guo-hai. Hydrofoil control system in hydrodynamics device based on angle inductor[J]. Ship & Bourt, 2006(4): 12-16. DOI:10.3969/j.issn.1001-9855.2006.04.003 [4] 吴恭兴, 邹劲, 孙寒冰, 等. 高速无人艇的运动建模及其视景仿真[J]. 大连海事大学学报, 2010(1): 9-18. WU Gong-xing, ZHOU Jin, SUN Han-bing, et al. Motion modeling and visual simulation for high speed unmanned surface vehicle[J]. Journal of Dalian Maritime University, 2010(1): 9-18. [5] 谢笑颖, 郝芳, 刘赟. 基于喷水推进器的单手柄操纵系统推力分配策略[J]. 船舶与海洋工程, 2017, 33(2): 46-52. XIE Xiao-ying, HAO Fang, LIU Yun. Research on waterjet propeller thrust allocation based on joystick operating system[J]. Naval Architecture and Ocean Engineering, 2017, 33(2): 46-52. [6] 王晋芝, 刘雨, 杨华, 等. 液压操作手柄控制系统优化设计[J]. 液压气动与密封, 2020(11): 51-55. WANG Jin-zhi, LIU Yu, YANG Hua, et al. Optimal design of hydraulic operating handle control system[J]. Hydraulic Pneumatic & Seals, 2020(11): 51-55.