﻿ 基于模糊层次分析的大型邮轮航行试验质量风险评估
 舰船科学技术  2023, Vol. 45 Issue (11): 40-45    DOI: 10.3404/j.issn.1672-7619.2023.11.008 PDF

Quality risk′s evaluation research of large cruise's sea trail based on fuzzy analytic hierarchy process
YANG Kun1, ZHOU Hong1
School of Naval Architecture and Ocean Engineering, Jiangsu University of Science and Technology, Zhenjiang 212000, China
Abstract: Risk assessment is an important part of risk management.Based on the polymorphism and ambiguity in the quality risk assessment of large cruise's sea trail, a fuzzy comprehensive evaluation method and hierarchical analysis method is proposed. According to the overall characteristics of the large cruise's sea trail , focuses on the six risk factors affecting the quality of large cruise's sea trail, established the quality risk index system and risk assessment model of large cruise's sea trail , and formed a theory and method system suitable for the risk assessment of large luxury large cruise's sea trail. At the same time, combined an actual sea trail project, took the fuzzy comprehensive evaluation method as the main framework, determined the weight coefficient of each evaluation index through the hierarchical analysis method based on the expert questionnaire survey method, and used the fuzzy linear weighted average transformation operator to carry out risk assessment.This method can realize the processing of uncertain information in the risk assessment process, make some fuzzy factors more certain, and can effectively reduce the inherent subjectivity of the traditional expert decision-making methods, making the evaluation results more objective.The results of this paper can provide reference for the quality risk assessment of large luxury sea trail.
Key words: sea trail     quality risk     fuzzy hierarchy     risk evaluation
0 引　言

1 模糊层次分析方法理论

 图 1 模糊层次分析法流程图 Fig. 1 Flow chart of fuzzy hierarchy analysis
1.1 风险评估指标体系的建立 1.1.1 建立层次结构模型

 图 2 层次结构示意图 Fig. 2 Schematic diagram of the hierarchy
1.1.2 确定评估的关键因素集合

 $U=\left\{{u}_{1},{u}_{2},{u}_{3},\cdots ,{u}_{i},\right\}。$ (1)

 ${u}_{i}=\left\{{u}_{i1},{u}_{i2},{u}_{i3},\cdots ,{u}_{ij},\right\} 。$ (2)

 ${\boldsymbol{V}}=\left\{{v}_{1},{v}_{2},{v}_{3},\cdots ,{v}_{n}\right\}，$ (3)

1.2 确定评价指标的权重 1.2.1 构建判断矩阵

1.2.2 算数平均法确定指标权重

 ${\omega }_{i}=\frac{1}{n}\sum _{j=1}^{n}\frac{{C}_{ij}}{\sum _{k=1}^{n}{C}_{kj}}，i,j,k=(\mathrm{1,2},3\cdots ,n)。$ (4)
1.2.3 判断矩阵的一致性检验

 $CI=\frac{{\lambda }_{\max}-n}{n-1}，$ (5)

 $CR=\frac{CI}{RI}。$ (6)

1.3 确定评估因素的隶属度矩阵

 ${{\boldsymbol{R}}}_{{\boldsymbol{i}}}=\left[{r}_{i1},{r}_{i2},{r}_{i3},\cdots ,{r}_{in}\right]。$ (7)

 $R=\left[\begin{array}{c}{R}_{1}\\ \vdots\\ {R}_{m}\end{array}\right]=\left[\begin{array}{ccc}{r}_{11}& \cdots & {r}_{1n}\\ \vdots & \ddots & \vdots \\ {r}_{m1}& \cdots & {r}_{mn}\end{array}\right]。$ (8)

1.4 模糊综合合成

 $\begin{split}{\boldsymbol{B}}=&{\boldsymbol{\omega}} \times {\boldsymbol{R}}=\left[{\omega }_{1},{\omega }_{2},\cdots ,{\omega }_{n}\right]\left[\begin{array}{ccc}{r}_{11}& \dots & {r}_{1n}\\ \vdots & \ddots & \vdots\\ {r}_{m1}& \cdots & {r}_{mn}\end{array}\right]=\\ &\left[{b}_{i1},{b}_{i2},\cdots ,{b}_{in}\right]。\end{split}$ (9)

 ${\boldsymbol{S}}={\boldsymbol{B}}\cdot{{\boldsymbol{V}}}^{{\rm{T}}}={\boldsymbol{B}}\cdot{[5,4,3,2,1]}^{{\rm{T}}}。$ (10)
2 实例分析

2.1 质量风险评估指标体系的建立

 图 3 质量风险评估指标体系 Fig. 3 Quality risk assessment index system
2.2 确定评价的关键因素集合 2.2.1 评价因素集合的构建

2.2.2 评语集合的构建

2.3 评估指标权重的确定 2.3.1 二级评估指标判断矩阵分析

2.3.2 一级评估指标判断矩阵分析

2.4 确定单因素的隶属度矩阵

 ${r}_{ijk}=\frac{{N}_{ijk}}{N},(k=\mathrm{1,2},\mathrm{3,4},5)。$ (11)

 ${R}_{1}=\left[\begin{array}{c}{r}_{11}\\ {r}_{12}\end{array}\right]=\left[\begin{array}{c}\begin{array}{ccc}0.2& 0.2& \begin{array}{cc}0.4& \begin{array}{cc}0.2& 0\end{array}\end{array}\end{array}\\ \begin{array}{ccc}0.2& 0.4& \begin{array}{ccc}0.2& 0.2& 0\end{array}\end{array}\end{array}\right]，$
 ${R_2} = \left[ {\begin{array}{*{20}{l}} {{r_{21}}}\\ {{r_{22}}}\\ {{r_{23}}}\\ {{r_{24}}} \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} {0.2}&{0.4}&{0.3}&{0.1}&0\\ 0&0&{0.4}&{0.5}&{0.1}\\ 0&{0.4}&{0.5}&{0.1}&0\\ {0.1}&{0.7}&{0.2}&0&0 \end{array}} \right]，$
 ${R_3} = \left[ {\begin{array}{*{20}{l}} {{r_{31}}}\\ {{r_{32}}}\\ {{r_{33}}}\\ {{r_{34}}} \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} {0.5}&{0.3}&{0.2}&0&0\\ 0&{0.1}&{0.3}&{0.4}&{0.2}\\ 0&{0.1}&{0.4}&{0.5}&0\\ {0.2}&{0.2}&{0.3}&{0.3}&0 \end{array}} \right] ，$
 ${R_4} = \left[ {\begin{array}{*{20}{l}} {{r_{41}}}\\ {{r_{42}}}\\ {{r_{43}}}\\ {{r_{44}}} \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} 0&{0.1}&{0.3}&{0.5}&{0.1}\\ 0&{0.3}&{0.6}&{0.1}&0\\ {0.1}&{0.3}&{0.4}&{0.2}&0\\ 0&{0.1}&{0.2}&{0.2}&{0.5} \end{array}} \right]，$
 ${R_5} = \left[ {\begin{array}{*{20}{l}} {{r_{51}}}\\ {{r_{52}}}\\ {{r_{53}}}\\ {{r_{54}}} \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} 0&{0.5}&{0.2}&{0.3}&0\\ {0.2}&{0.4}&{0.2}&{0.2}&0\\ 0&{0.2}&{0.5}&{0.3}&0\\ 0&{0.3}&{0.2}&{0.2}&0 \end{array}} \right]，$
 ${R_6} = \left[ {\begin{array}{*{20}{l}} {{r_{61}}}\\ {{r_{62}}} \end{array}} \right] = \left[ {\begin{array}{*{20}{l}} {0.2}&{0.4}&{0.4}&0&0\\ {0.2}&{0.5}&{0.3}&0&0 \end{array}} \right]，$
2.5 模糊综合评估 2.5.1 二级模糊综合评估

U1的评估结果：

 \begin{aligned}[b] {B}_{1}=&{\omega }_{1}^{,}\cdot{R}_{1}=\left[{\omega }_{11},{\omega }_{12}\right]{\left[{r}_{11},{r}_{12}\right]}^{{\rm{T}}}=\\ & [0.200\ 0 ,\mathrm{0.350\ 0,0.250\ 0} ,\mathrm{0.200\ 0,0}]，\end{aligned}

U2的评估结果：

 \begin{aligned}[b] {B}_{2}=&{\omega }_{2}^{,}\cdot{R}_{2}=\left[{\omega }_{21},{\omega }_{22}\right]{\left[{r}_{21},{r}_{22}\right]}^{{\rm{T}}}=\\ &\left[\mathrm{0.093\ 5,0.400\ 1,0.351\ 2,0.140\ 2,0.015\ 1}\right] ，\end{aligned}

U3的评估结果：

 \begin{aligned}[b] {B}_{3}=&{\omega }_{3}^{,}\cdot{R}_{3}=\left[{\omega }_{31},{\omega }_{32},{\omega }_{33},{\omega }_{34}\right]{\left[{r}_{31},{r}_{32},{r}_{33},{r}_{34}\right]}^{{\rm{T}}}=\\ & \mathrm{0.289\ 8,0.221\ 1,0.266\ 1,0.197\ 3,0.025\ 6}]，\end{aligned}

U4的评估结果:

 \begin{aligned}[b] {B}_{4}=& {\omega }_{4}^{,}\cdot{R}_{4}=\left[{\omega }_{41},{\omega }_{42},{\omega }_{43},{\omega }_{44}\right]{\left[{r}_{41},{r}_{42},{r}_{43},{r}_{44}\right]}^{{\rm{T}}}=\\ & \left[\mathrm{0.029\ 9,0.211\ 4,0.395\ 9,0.273\ 0,0.089\ 8}\right]，\end{aligned}

U5的评估结果：

 \begin{aligned}[b] {B}_{5}=&{\omega }_{5}^{,}\cdot{R}_{5}=\left[{\omega }_{51},{\omega }_{52},{\omega }_{53},{\omega }_{54}\right]{\left[{r}_{51},{r}_{52},{r}_{53},{r}_{54}\right]}^{{\rm{T}}}=\\ & \left[\mathrm{0.070\ 1,0.374\ 0,0.238\ 9,0.238\ 9,0.077\ 9}\right] ，\end{aligned}

U6的评估结果：

 \begin{aligned}[b] {B}_{6}=&{\omega }_{6}^{,}\cdot{R}_{6}=\left[{\omega }_{61},{\omega }_{62}\right]{\left[{r}_{61},{r}_{62}\right]}^{{\rm{T}}}=\\ & \left[\mathrm{0.200\ 0,0.433\ 3,0.366\ 7,0}\right] 。\end{aligned}
2.5.2 一级模糊综合评估：

2.6 评估结果的最终实现

 \begin{aligned}[b] S=&B\cdot{V}^{{\rm{T}}}=\left[\mathrm{0.138\ 8,0.336\ 5,0.187\ 8,0.030\ 9}\right]\times \\ & {\left[\mathrm{5,4},\mathrm{3,2},1\right]}^{{\rm{T}}}=3.3658。\end{aligned}

3 结　语

1）结合航行试验实际情况，主要考虑影响航行试验质量的六大因素，构建了大型邮轮航行试验项目质量风险评估指标体系，利用层次分析法计算各个指标的权重系数，再利用模糊综合评估方法进行综合评估。

2）最终的综合评估价结果表明实例分析中的航行试验现阶段的质量风险值为3.3658，风险等级处于一般偏较高水平，其中一级指标中风险分数最高的是环境风险U6，风险结果为3.8333。环境风险接近较高风险等级，表明在航行试验过程中，对航行试验的质量影响最大的使环境风险。其次是物资保障风险U3和船舶设备风险U1，分别为3.5518和3.5510，风险水平处于一般徧较高，表明后续航行试验开展过程中应当对船舶设备和物资保障风险加强防范，制定相应的措施来降低或者屏蔽风险。

 [1] 任威. 新船试航中动力装置调试FSA方法的研究[D]. 大连海事大学, 2009. [2] 陈思旭, 商蕾, 汪敏, 柳化松. 基于模糊层次分析的邮轮客舱设计综合评价研究[J]. 舰船科学技术, 2021, 43(21): 68-73. [3] 于上媛, 刘晓冰, 薛方红. 基于灰色层次分析法的船舶修理项目优先级评价研究[J]. 项目管理技术, 2016, 14(7): 122-128. DOI:10.3969/j.issn.1672-4313.2016.07.023 [4] 陈曜坤. 基于模糊综合评价的A施工项目风险管理研究[D]. 苏州大学, 2020. [5] 刘秀峰, 王来强. 基于模糊综合评价法的舰船机电设备维修决策研究[J]. 中国水运(下半月), 2019, 19(12): 50-51. [6] 瞿君. 层次分析模型在室内空气质量评价中的应用研究[J]. 环境科学与管理, 2017, 42(12): 174-178. DOI:10.3969/j.issn.1673-1212.2017.12.042 [7] 张文保, 施伟锋, 兰莹, 等. 基于层次分析—模糊综合评估法的电力推进船舶电能质量实时评估系统[J]. 中国舰船研究, 2019, 14(6): 48-57. DOI:10.19693/j.issn.1673-3185.01527 [8] 李玉琳, 高志刚, 韩延玲. 模糊综合评价中权值确定和合成算子选择[J]. 计算机工程与应用, 2006(23): 38-42+197. DOI:10.3321/j.issn:1002-8331.2006.23.012