﻿ 不同风舷角下的航空母舰气流场特性研究
 舰船科学技术  2023, Vol. 45 Issue (11): 33-39    DOI: 10.3404/j.issn.1672-7619.2023.11.007 PDF

1. 广东海洋大学 船舶与海运学院，广东湛江 524088;
2. 浙江大学 海洋学院，浙江舟山 316021;
3. 宁波大学 海运学院，浙江宁波 315211

Research on airflow field of aircraft carrier under different wind angles
ZHANG Da-peng1, YAN Jin1, ZHAO Bo-wen2, HOU Ling1, ZHU Ke-qiang3
1. Ship and Maritime College, Guangdong Ocean University, Zhanjiang 524088, China;
2. Ocean College University, Hangzhou 316021, China;
3. Faculty of Maritime and Transportation, Ningbo University, Ningbo 315211, China
Abstract: The study of aircraft carrier airflow field is of great significance to the overall design of aircraft carrier. In this paper, the airflow field of the aircraft carrier under different wind angles is numerically simulated based on RANS method. The Isherwood empirical formula is also used to calculate the wind load. The numerical simulation results are compared with the empirical formula to investigate the applicability of RANS method and Isherwood method to the prediction of aircraft carrier wind load. The results show that the RANS method can obtain reasonable numerical prediction results, while the Isherwood method has poor adaptability under some wind side angles. This paper also analyzes the characteristics of aircraft carrier airflow field under different wind side angles. The researches show that the flow field around aircraft carrier floating platform and ship island will have a strong interaction at a certain wind side angle. The conclusion has a certain reference value for the study of aircraft carrier airflow field.
Key words: aircraft carrier     airflow field     wind load     numerical simulation
0 引　言

1 理论计算

 \left\{ \begin{aligned} {C_x} = & {a_0} + {a_1}\frac{{2{A_L}}}{{L_{OA}^2}} + {a_2}\frac{{2{A_T}}}{{{B^2}}} + {a_3}\frac{{{L_{OA}}}}{{{B^2}}} + {a_4}\frac{S}{{{L_{OA}}}} +\\ &{a_5}\frac{C}{{L_{OA}^2}} + {a_6}M ，\\ {C_y} = & {b_0} + {b_1}\frac{{2{A_L}}}{{L_{OA}^2}} + {b_2}\frac{{2{A_T}}}{{{B^2}}} + {b_3}\frac{{{L_{OA}}}}{{{B^2}}} + {b_4}\frac{S}{{{L_{OA}}}} +\\ & {b_5}\frac{C}{{{L_{OA}}}} + {b_6}\frac{{{A_{ss}}}}{{{A_L}}}，\\ {C_n} = & {c_0} + {c_1}\frac{{2{A_L}}}{{L_{OA}^2}} + {c_2}\frac{{2{A_T}}}{{{B^2}}} + {c_3}\frac{{{L_{OA}}}}{B} + {c_4}\frac{S}{{{L_{OA}}}} + {c_5}\frac{C}{{{L_{OA}}}}。\end{aligned} \right. \hspace{-10pt} (1)

2 数值计算 2.1 计算方法 2.1.1 控制方程

 $\frac{{\partial \rho }}{{\partial t}} + \frac{{\partial \left( {\rho {u_i}} \right)}}{{\partial {x_i}}} = 0 ，$ (2)
 $\frac{{\partial \left( {\rho {u_i}} \right)}}{{\partial t}} + \frac{{\partial \left( {\rho {u_i}{u_j}} \right)}}{{\partial {x_i}}} = - \frac{{\partial p}}{{\partial {x_i}}} + \mu \frac{\partial }{{\partial {x_i}}}\left( {\frac{{\partial {u_i}}}{{\partial {x_i}}}} \right) + \frac{\partial }{{\partial {x_j}}}\left( { - \rho \overline {{u_i}{u_j}} } \right) 。$ (3)

2.1.2 控制方程

 $\frac{\partial }{{\partial t}}\left( {\rho k} \right) + \frac{\partial }{{\partial {x_i}}}\left( {\rho k\overrightarrow {{u_i}} } \right) = \frac{\partial }{{\partial {x_j}}}\left( {{\varGamma _k}\frac{{\partial k}}{{\partial {x_j}}}} \right) + \widetilde {{G_k}} - {Y_k} + {S_k} ，$ (4)
 $\frac{\partial }{{\partial t}}\left( {\rho \omega } \right) + \frac{\partial }{{\partial {x_i}}}\left( {\rho \omega \overrightarrow {{u_i}} } \right) = \frac{\partial }{{\partial {x_j}}}\left( {{\varGamma _\omega }\frac{{\partial \omega }}{{\partial {x_j}}}} \right) + \widetilde {{G_\omega }} - {Y_\omega } + {D_\omega } + {S_\omega } 。$ (5)

2.2 计算模型

 图 1 航母受力方向和风舷角定义 Fig. 1 Force direction and wind angle

 ${C_x} = \frac{X}{{\dfrac{1}{2}\rho {U^2}{A_T}}} ，{C_y} = \frac{Y}{{\dfrac{1}{2}\rho {U^2}{A_L}}} ，{C_n} = \frac{{{M_n}}}{{\dfrac{1}{2}\rho {U^2}{L_{OA}}{A_L}}}。$ (6)
2.3 网格模型 2.3.1 边界条件

 图 2 计算域和边界条件 Fig. 2 Computational domain and boundary conditions
2.3.2 网格收敛性

 图 3 计算网格 Fig. 3 Calculation meshes
2.4 求解器及计算设置

3 数值计算 3.1 风载荷系数

 图 4 风载荷系数对比 Fig. 4 Comparison of wind load coefficient

3.2 船体表面风压

 图 5 不同风舷角下的船体表面风压分布云图 Fig. 5 Wind pressure under different wind angles
3.3 整体流线分布

 图 6 不同风舷角下的整体流线分布 Fig. 6 Streamline under different wind angles
3.4 舰岛周围流线矢量

 图 7 不同风舷角下舰岛周围的流线矢量 Fig. 7 Streamline vector around Island under different wind angles

3.5 涡结构

 图 8 不同风舷角下的航母涡结构 Fig. 8 Vortex structure under different wind angles

3.6 改善气流场的措施

4 结　语

1）RANS法和Isherwood法得到的风载荷系数的变化规律基本一致，说明了数值模拟和Isherwood法在预报航母风载荷系数上的可行性。但限于船型结构，Isherwood法在部分风舷角下的适用性较差。

2）航母受到的风阻绝大部分原因是由于航母的正迎风面和背风面的压力差引起的。气流的分离及漩涡的产生是航母风阻增加的根本原因。

3）航母的绕流场特征整体上比较复杂，随风舷角的变化有着非常显著的不同。在任何风舷角下，流场中总存在流动分离区，航母各部分的绕流场会在一定风舷角下产生强烈的相互影响。

4）通过对航母整体外形构型和局部细节部位进行优化设计可以改善航母气流场，使气流场更加均匀，从而减小风阻。

 [1] 全泽宇. 航母舰载机牵引车路径规划与轨迹跟踪研究[D]. 哈尔滨: 哈尔滨工程大学, 2020. [2] 陈小飞, 时立攀, 毕玉泉. 美军航母舰载机出动回收能力和飞行甲板控制策略探讨[J]. 舰船科学技术, 2020, 42(21): 174-179. CHEN Xiao-fei, SHI Li-pan, BI Yu-quan. A discussion on the sortie generation capacity of embarked airwingsand the doctrine of flight deck control of U. S. aircraft carrier[J]. Ship Science and Technology, 2020, 42(21): 174-179. [3] POLSKY S A, BRUNER C W. Time-accurate computational simulations of an LHA ship airwake[R]. AIAA 2000–4126. [4] POLSKY S A. A computational study of unsteady ship airwake[R]. AIAA, 2002: 10–22. [5] CZERWIEC R M, POLSKY S A. LHA airwake wind tunnel and CFD comparison with and without bow flap[R]. AIAA 2004: 48–32. [6] POLSKY S A, NAYLOR S. CVN airwake modeling and integration: initial steps in the creation and implementation of a virtual burble for F-18 carrier landing simulations[R]. AIAA 2005: 62–98. [7] RAJAGOPALAN G, SCHALLER D, WADCOSK A J, et al. Experimental and computational simulation of a model ship in a wind tunnel[R]. AIAA, 2005: 13–47. [8] SYMS G F. Simulation of simplified-frigate air wakes using a lattice-boltzmann method[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2008, 96: 197-126. DOI:10.1016/j.jweia.2007.06.040 [9] FORREST S, OWEN I. An investigation of ship airwakes using detached-eddy simulation[J]. Computers and Fluids, 2010, 29: 656-673. [10] KULKARNI P R, SINGH S N, SESHADRI V. Parametric studies of exhaust smoke-superstructure interaction on a naval ship using CFD[J]. Computers and Fluids, 2007, 36: 794-816. DOI:10.1016/j.compfluid.2006.07.001 [11] YUAN W, WALL A, LEE R. Combined numerical and experimental simulations of unsteady ship airwakes[J]. Computers & fluids, 2018, 172: 29-53. [12] BUCHHOLZ J, MARTIN J, KREBILL A F, et al. Structure of a ship airwake at model and full scale[C]//2018 AIAA Aerospace Sciences Meeting. 2018: 1263. [13] DOOLEY G, MARTIN J E, BUCHHOLZ J H J, et al. Ship airwakes in waves and motions and effects on helicopter operation[J]. Computers & Fluids, 2020, 208: 104627. [14] 洪伟宏, 姜治芳, 王涛. 上层建筑形式及布局对舰船空气流场的影响[J]. 中国舰船研究, 2009(2): 53–58. [15] 陆超, 姜治芳, 王涛. 不同工况条件对舰船舰面空气流场的影响[J]. 舰船科学技术, 2009, 31(9): 38–42. [16] 陆超, 姜治芳, 王涛. 基于舰载机起降限制的舰船气流场特性评估方法初探[J]. 中国舰船研究, 2010, 5(1): 39–42. [17] 陆超, 姜治芳, 王涛. 两种飞行甲板形式的舰船空气流场特性比较[J]. 舰船科学技术, 2009, 31(7): 29–31. [18] 郜冶, 刘长猛, 贺征. 风向变化产生的航母甲板涡结构特征研究[J]. 空气动力学学报, 2013, 31(3): 310–315. [19] 赵维义. 直升机旋翼与舰船复合流场试验方法研究[J]. 飞行力学, 2007(2): 72–74+77. [20] 郜哲明. 航母甲板风场和火灾流场实验与数值研究[D]. 哈尔滨: 哈尔滨工程大学, 2019. [21] 於菟, 秦江涛, 方乐. 航母气流场数值模拟方法研究[J]. 武汉理工大学学报(交通科学与工程版), 2020, 44(06): 1036–1040. [22] Wind resistance of merchant ship[J]. Trans. of RINA, 1972(112): 327–338.