﻿ 舰载激光通信设备设计及试验研究
 舰船科学技术  2023, Vol. 45 Issue (10): 127-130    DOI: 10.3404/j.issn.1672-7649.2023.10.024 PDF

Design and experimental study of shipborne laser communication equipment
LIU Jin-biao, XU Lin, MA Jian-jun, AN Jian-xin, SHEN Yong, LIU Xue, JIANG Zu-yun, JIANG Xiang
The 34 Research Institute of CETC, Guilin 541004, China
Abstract: Wireless optical communication is an important means of communication guarantee in complex electromagnetic environment and radio silence due to its advantages of no electromagnetic radiation and not easy to be affected by electromagnetic interference. Aiming at the sea channel, the parameter design and link power margin analysis are carried out by using Naboulsi model. The key technologies and overall design scheme such as shipborne distance laser communication, moving platform scanning, acquisition and tracking, and high-precision los stability are introduced. The developed shipborne laser communication equipment is carried on the ship for a long time application test at sea, and the stable transmission of 32 km and 1000 M Ethernet data is realized. The test shows that the performance parameters of the equipment satisfy the design requirements.
Key words: wireless optical communication     shipborne laser communication     complex electromagnetic environment     electromagnetic silence     sea channel     acquisition and tracking
0 引　言

1 海面信道分析及参数设计

Naboulsi模型的平流雾衰减系数计算公式为：

 $25\alpha \left(\lambda \right)=\frac{0.11478\lambda +3.8367}{V}。$ (1)

 图 1 平流雾和对流雾对通信链路功率余量的影响分析 Fig. 1 Analysis of influence of advection fog and convection fog on the power margin of comuication link
2 设备组成及设计 2.1 设备组成

 图 2 舰载激光通信设备组成图 Fig. 2 Composition diagram of shipborne laser communication equipment
2.2 单元设计 2.2.1 长距离激光通信设计

 图 3 信号光收发光路设计 Fig. 3 Design of receiving and emitting signal light
2.2.2 动平台扫描捕获跟踪设计

 图 4 扫描捕获跟踪设计 Fig. 4 Design of scanning, acquisition and tracking
2.2.3 高精度视轴稳定设计

 图 5 视轴稳定控制设计 Fig. 5 Design of LOS stabilization servo control

3 设备研制及试验

 图 6 舰载激光通信设备测试连接图 Fig. 6 Test connection diagram of shipborne laser communication equipment

4 结　语

 [1] XIE C J, SILVIA S, DONG P, et al. 400-Gb/s PDM-4PAM WDM system using a monolithic 2×4 vcsel array and coherent detection[J]. Journal of Lightwave Technology, 2015, 33(2): 670-677. [2] 徐林, 刘立国, 甘润, 等. 单波道10 Gb/s大容量无线光通信设备设计与试验研究[J]. 光通信技术, 2016, 40(9): 50-52. [3] TAN L Y, YU J J, MA J, et al. Approach to improve beam quality of inter-satellite optical communication system based on diffractive optical elements[J]. Optics Express, 17(8): 6311-6319. [4] HENNIGER H, WILDERT O. An introduction to free-space optical communications[J]. Radioengineering, 2010, 19(2): 203-212. [5] SADIKU M N O, S. M. Musa. free space optical communications: an overview[J]. European Scientific Journal February, 2016, 12(9): 55-68. [6] ABDULLAH N K, USMAN Y, MUHAMMAD Q M, et al. Atmospheric propagation of space-fractional Gaussian-beam waves in a FSO communication system[J]. Optics Express, 2022, 30(2): 1570-1583. DOI:10.1364/OE.446708 [7] MAHER C AI N, HER VE S, FREDERIQUE F AI N, et al. Fog attenuation prediction for optical and infrared waves[J]. Optical Engineering, 2004, 43(2): 319-329. DOI:10.1117/1.1637611