﻿ U型减摇水舱的流体动力特性分析及控制系统设计
 舰船科学技术  2023, Vol. 45 Issue (10): 23-26    DOI: 10.3404/j.issn.1672-7649.2023.10.005 PDF
U型减摇水舱的流体动力特性分析及控制系统设计

Analysis of hydrodynamic characteristics and development of control system for U-shaped anti-roll tank
XIAO Qing-qing
Yangtze University College of Arts and Sciences, Jingzhou 434020, China
Abstract: Ship roll reduction control has always been an important research direction in the field of ships, anti-roll water tank uses the gravity of the tank liquid to generate anti-roll power, improve the stability of the ship, common anti-roll water tank includes active anti-roll water tank and passive anti-roll water tank two, passive anti-roll water tank has no control system, can only be reduced by the inertia of the water body in the cabin. The active anti-roll water tank has an in-cabin water pump control system, which can control the movement of the water body in the cabin according to the characteristics of the external environment, and has a better anti-roll effect. The structure of active anti-roll and passive anti-roll tanks is mainly U-shaped structure, and the hydrodynamic performance and control system of an active U-shaped tank are studied, and the composition and simulation process of the control system are introduced in detail.
Key words: anti-roll water tank     fluid power     control system     emulation
0 引　言

1 船舶摇动的水动力建模

 $f\left( t \right) = B\sin \left( {{w_o}t + {\varphi _0}} \right) \text{，}$

 图 1 船舶摇动的运动坐标系 Fig. 1 The motion coordinate system of the ship's rocking

 $\left\{ {\begin{array}{*{20}{l}} {\left( {{J_0} + \Delta {J_{}}} \right)w + 2\kappa w + \dfrac{1}{2}Dh\theta = {T_0}}，\\ {M\dot v\sin \theta + M\dot u\cos \theta = {F_0}} 。\end{array}} \right.$

 $t = \sqrt 2 \pi \sqrt {\frac{{v + \Delta v}}{{D\sin \theta }}} 。$

 图 2 不同周期的船舶摇动角度曲线 Fig. 2 Ship rocking angle curves for different cycles

 ${F_0} = \frac{1}{2}{\rho _0}S \cdot \delta {V_1}^2 \text{。}$

 ${T_0} = \frac{1}{2}h\sin \theta {F_s}\cos A \text{，}$

2 U型减摇水舱的结构原理及水动力建模

1）被动式

2）主动式

 图 3 船舶主动式减摇水舱的剖面结构图 Fig. 3 Profile structure of the ship's active anti-roll tank

1）船舶在波浪载荷下的摇动是指通过重心Goy轴摇动，在短时间内，该中心轴可视为固定。

2）减摇水舱关于船舶的纵向中心线对称分布，可视为沿船长方向是等截面的，这种假设有利于简化壁是直的并且是等截面的。

3）整个水舱横截面上是相等的，用单一坐标可以描述水舱内液体的运动。

 ${J_s}\ddot \phi + {B_s}\dot \phi + {K_s}\phi + {J_u}\ddot \theta + {K_{\text{s}}}\theta = M({t}) \text{，}$
 ${J_u}\ddot \phi + {K_s}\phi + {J_{\text{t}}}\ddot \theta + {B_{\text{t}}}\dot \theta + {K_{\text{t}}}\theta = 0 \text{。}$

${J_t}$ 计算式为：

 ${J_t} = 2\frac{\rho }{g}{A_0}{R^2}\left( {h + R{A_0}/{A_t}} \right) \text{。}$

${K_t}$ 计算式为：

 ${K_t} = \rho {\text{g}}{A_0}{{R}^2} \text{，}$

 ${M_{t}} = {a_s}{J_{\text{s}}}\ddot \phi - {b_s}{K_t}\phi + \lambda \text{。}$

 ${a_s} = 1 - \frac{{{\omega ^2}}}{{\omega _{s}^{}}},\quad {b_{s}} = \frac{{{B_t}\omega }}{{{K_{t}}}},\quad \lambda = \frac{{{K_t}}}{{{K_s}}} \text{。}$

 图 4 水舱减摇力矩与船体扰动力矩的相互作用原理 Fig. 4 The interaction principle of the anti-roll torque of the tank and the disturbance moment of the hull

3 U型减摇水舱的控制系统设计及仿真 3.1 船舶U型减摇水舱控制系统的设计

 图 5 船舶U型减摇水舱控制系统的设计原理图 Fig. 5 Design schematic diagram of ship U-shaped anti-roll tank control system

1）上位机平台

U型减摇水舱控制系统的上位机是控制系统的核心，选用微型计算机作为上位机，CPU硬件为coreI7-5200[4]，运存8 G，数据存储空间256 G，能够满足减摇水舱工作过程的数据运算和数据存储需求。

2）执行单元

3.2 U型减摇水舱控制系统的减摇特性仿真

1）波浪仿真模型

 图 6 基于Simulink的减摇水舱控制系统仿真流程图 Fig. 6 Simulation flow chart of anti-roll tank control system based on simulink

3）船舶参数

 图 7 仿真得到的减摇水舱控制系统性能对比曲线 Fig. 7 Comparison curve of performance of anti-shake tank control system obtained by simulation
4 结　语

U型减摇水舱对于降低船舶在波浪载荷下的摇动有重要的作用，本文针对U型减摇水舱的结构原理、水舱与船体耦合系统的流体动力学特性等进行研究，开发U型减摇水舱的控制系统，并进行系统的仿真验证。

 [1] 梁利华, 王继铭, 宋吉广, 等. 可变周期被动式减摇水舱设计与仿真研究[J]. 中国舰船研究, 2021, 16(4): 147-154. LIANG Li-hua, WANG Ji-ming, SONG Ji-guang, et al. Design and simulation of variable period passive anti-roll tank[J]. Chinese Journal of Ship Research, 2021, 16(4): 147-154. [2] 骆寒冰, 王成彬, 盛庆武. 减摇水舱液体晃荡固有特性数值与模型试验[J]. 中国海洋平台, 2020, 35(5): 1-6. LUO Han-bing, WANG Cheng-bin, SHENG Qing-wu. Numerical value and model test of intrinsic characteristics of liquid sloshing in anti-shake water tank[J]. China Offshore Platform, 2020, 35(5): 1-6. [3] 吴建林, 邵昱, 刘少卿, 等. U型减摇水舱模型试验与数值仿真[J]. 船舶工程, 2016, 38(6): 42-44+54. WU Jian-lin, SHAO Yu, LIU Shao-qing, et al. Model test and numerical simulation of U-shaped anti-roll tank[J]. Ship Engineering, 2016, 38(6): 42-44+54. [4] 张松涛, 梁利华, 孙明晓, 等. 耦合船体横摇的减摇水舱流体运动和减摇效果预测[J]. 计算力学学报, 2016, 33(2): 252-256+262. ZHANG Song-tao, LIANG Li-hua, SUN Ming-xiao, et al. Prediction of fluid motion and anti-roll effect of anti-roll tank coupled with hull roll[J]. Chinese Journal of Computational Mechanics, 2016, 33(2): 252-256+262. [5] 邹康, 许晶. 一种带减摇水舱的船舶运动的时域分析方法[J]. 中国造船, 2016, 57(1): 31-37. ZOU Kang, XU Jing. A time-domain analysis method for ship motion with anti-roll tank[J]. China Shipbuilding, 2016, 57(1): 31-37. DOI:10.3969/j.issn.1000-4882.2016.01.004