﻿ 风力助航船的风速监测技术
 舰船科学技术  2023, Vol. 45 Issue (7): 182-185    DOI: 10.3404/j.issn.1672-7649.2023.07.036 PDF

1. 江苏海事职业技术学院 水上智能交通与海事服务研究所，江苏 南京 211170;
2. 长江南京航道工程局，江苏 南京 210011

Research on thewind speed monitoring technology of a wind-aided sailing ship
GUO Ya-na1, SUN Xiao-feng1,2
1. Jiangsu Maritime Institute, Research Center of Waterborne Intelligent Transportation and Maritime Services, Nanjing 211170, China;
2. Changjiang Nanjing Waterway Engineering Bureau, Nanjing 210011, China
Abstract: As a new type of ship, wind-aided navigation ship can supplement its own power system and improve energy efficiency by taking advantage of abundant offshore wind energy resources. The research focus of this paper is the monitoring technology of wind speed and wind direction of wind-aided ships. As the key signal input of wind-aided ships, wind speed and wind direction information is the key to sail control of ships. Therefore, it is very important to improve the monitoring level of wind speed and wind direction at sea. This paper introduces the principle of wind speed monitoring for wind-aided ships, builds a wind speed monitoring platform for wind-aided ships, and expounds the principle and workflow of the platform in detail.
Key words: wind-aided vessel     wind speed monitoring     energy efficiency
0 引　言

1 风速监测技术的研究与发展现状

 $\Delta f = {f_r} - {f_s} = 2V \times {f_s} \times \frac{{\cos \theta }}{c} \text{。}$

 $V = \frac{{\Delta f \times c}}{{2{f_s} \times \cos \theta }} \text{。}$

1）单向测速

 图 1 基于多普勒法的单向风速测量原理 Fig. 1 Principle of one-way wind speed measurement based on Doppler method

 $\begin{gathered} \frac{d}{{{t_{12}}}} = {V_s} + {V_w} \text{，} \\ \frac{d}{{{t_{21}}}} = {V_s} - {V_w} \text{，} \\ \end{gathered}$

 ${V_{\text{w}}} = \frac{d}{2}\left( {\frac{1}{{{t_{12}}}} - \frac{1}{{{t_{21}}}}} \right) 。$

2）多向测速

 图 2 基于多普勒法的多向风速测量原理 Fig. 2 Principle of multidirectional wind velocity measurement based on Doppler method

 $\begin{gathered} {V_{wx}} = \frac{d}{2}\left( {\frac{1}{{{t_{12}}}} - \frac{1}{{{t_{21}}}}} \right) \text{，}\\ {V_{wy}} = \frac{d}{2}\left( {\frac{1}{{{t_{34}}}} - \frac{1}{{{t_{43}}}}} \right)\text{，}\\ \end{gathered}$

 ${V_w} = \frac{d}{2}\sqrt {\left( {{{\left( {\frac{1}{{{t_{12}}}} - \frac{1}{{{t_{21}}}}} \right)}^2} + {{\left( {\frac{1}{{{t_{34}}}} - \frac{1}{{{t_{43}}}}} \right)}^2}} \right)} \text{。}$

 $\cos \beta = \frac{{{V_{wx}}}}{{{V_{wy}}}} 。$
2 基于单片机的风力助航船风速监测技术开发 2.1 风速监测系统的整体开发

1）数据的采集

2）数据传输

3）数据的处理和显示

 图 3 风力助航船的风速监测平台原理图 Fig. 3 Schematic diagram of wind speed monitoring platform for a wind-aided vessel

1）主控制系统

2）姿态仪

3）液晶显示器

 图 4 LCD液晶显示器的引脚时序图 Fig. 4 Pin sequence diagram of LCD liquid crystal display
2.2 风力助航船的风速数据后处理研究

 图 5 风向矢量合成原理图 Fig. 5 Schematic diagram of vector synthesis

 $\begin{gathered} {X_1} = {V_1}\cos {\beta _1}\text{，} \\ {Y_1} = {V_1}\sin {\beta _1} \text{，}\\ \end{gathered}$

$\;{\beta _1}$ 为第1组数据的风向，假设一次数据采集过程产生的数据量为n组，则可以得到：

 $\begin{gathered} {X_n} = {V_n}\cos {\beta _n} \text{，} \\ {Y_n} = {V_n}\sin {\beta _n} \text{，} \\ \end{gathered}$
 $\begin{gathered} X = \sum\limits_{i = 1}^n {{x_1},{x_2},...,{x_n}}\text{，} \\ Y = \sum\limits_{i = 1}^n {{y_1},{y_2},...,{y_n}} \text{，} \\ \end{gathered}$

 $\begin{gathered} \bar X = \frac{{\displaystyle\sum\limits_{i = 1}^n {{x_n}} }}{N}，\\ \bar Y = \frac{{\displaystyle\sum\limits_{i = 1}^n {{y_n}} }}{N}，\\ \bar \beta = \arctan \frac{{\bar X}}{{\bar Y}} 。\\ \end{gathered}$
2.3 风力助航船风速监测系统平台工作流程

 图 6 风速风向监测平台的工作流程图 Fig. 6 Flow chart of wind speed and direction monitoring platform
3 结　语

 [1] 周凌, 赵前程, 石照耀, 等. 风电场风电机组机载风速仪状态自确认[J]. 太阳能学报, 2022, 43(11): 172-178. ZHOU Ling, ZHAO Qian-cheng, SHIZhao-yao, et al. State Self-confirmation of airborne anemometer for wind farm wind turbine[J]. Acta Energiae Solaris Sinica, 2022, 43(11): 172-178. [2] 周识略, 邹泽成, 杨名洋, 等. 基于X型恒温热线风速仪的径流涡轮入口旋流试验研究[J]. 车用发动机, 2022(5): 74-79. ZHOU Shi-lue, ZOU Ze-cheng, YANG Ming-yang, et al. Experimental study on swirl flow in runoff turbine inlet based on x-type thermostatic hot-wire anemometer[J]. Vehicle Engine, 2022(5): 74-79. DOI:10.3969/j.issn.1001-2222.2022.05.011 [3] 包云, 李亚群, 马祯, 等. 高速铁路风速监测异常数据判识方法研究[J]. 铁道建筑, 2021, 61(10): 154-157. BAO Yun, LI Ya-qun, MA Zhen, et al. Research on abnormal data identification method of wind speed monitoring for high-speed railway[J]. Railway Construction, 2021, 61(10): 154-157. DOI:10.3969/j.issn.1003-1995.2021.10.35 [4] 李松奎, 边泽强, 刘昕. 超声波风速仪测量结果不确定度评定[J]. 电子测量技术, 2019, 42(15): 112-116. LI Song-kui, BIAN Ze-qiang, LIU Xin. Evaluation of uncertainty of measurement results of ultrasonic anemometer[J]. Electronic Measurement Technique, 2019, 42(15): 112-116. [5] 王翰锋. 基于Fluent巷道断面平均风速点定位监测模拟研究[J]. 煤炭科学技术, 2015, 43(8): 92-96. WANG Han-feng. Research on location monitoring simulation of tunnel section average wind speed point based on fluent[J]. Coal Science and Technology, 2015, 43(8): 92-96. [6] 何建海, 胡以怀, 张建霞, 等. 风能在船舶上的应用现状及展望[J]. 船舶工程, 2013, 35(5): 112-115. HE Jian-hai, HU Yi-huai, ZHANG Jian-xia, et al. Application status and prospect of wind energy in ships[J]. Ship Engineering, 2013, 35(5): 112-115.