﻿ 深潜救生艇模拟器24 V电源新型变换器研究
 舰船科学技术  2023, Vol. 45 Issue (7): 138-143    DOI: 10.3404/j.issn.1672-7649.2023.07.026 PDF

1. 海军潜艇学院，山东 青岛 266011;
2. 中国船舶科学研究中心，江苏 无锡 214082

Research on new type converter of submarine rescue vehicle simulator 24 V power supply
ZHAO Hai-bin1, CHEN Jia-wei2, ZHONG Hou-yang1
1. Navy Submarine Academy, Qingdao 266011, China;
2. China Ship Scientific Research Center, Wuxi 214082, China
Abstract: To solve the problem of high electromagnetic interference of 24 V power supply that is applied to submarine rescue vehicle (SRV) simulator, and meet the need of SRV simulator for low electromagnetic characteristics of 24 V power supply, this paper proposes an improved SRV simulator 24 V power supply circuit DC/DC converter based on the technical shortcomings of existing 24 V power supply circuit converter. In this paper the derivation process of the converter and the specific working mechanism are analyzed. The voltage input and output relationship formula is derived, and the voltage stresses, current stresses and power dissipation of the main components are calculated. Finally, the simulation results and experiments carried out on the 100 W experimental prototype show that the proposed converter has the advantages of input current zero ripple and low ripple of output current. The theoretical analysis is consistent with the simulation results and experimental results, verifying the correctness of theoretical analysis and the effectiveness and practicability of the converter.
Key words: SRV     power supply     converter
0 引　言

 图 1 深潜救生艇模拟器 Fig. 1 The simulator of SRV

 图 2 深潜救生艇模拟器24 V电源结构 Fig. 2 The 24 V power supply structure of SRV simulator

1 工作模式

 图 3 变换器结构原理图 Fig. 3 The schematic diagram of converter

 图 4 变换器工作状态 Fig. 4 The working states of converter

2 直流稳态分析

 $\left\{ \begin{gathered} {V_{{\text{L1\_ON}}}} = {V_{\text{g}}} - {V_{{\text{CO}}}} + {V_{{\text{C3}}}} ，\\ {V_{{\text{L2\_ON}}}} = {V_{{\text{C2}}}} + {V_{{\text{CO}}}} - {V_{{\text{C3}}}} ，\\ {V_{{\text{L3\_ON}}}} = {V_{{\text{C1}}}}，\\ {V_{{\text{L4\_ON}}}} = {V_{{\text{CO}}}} - {V_{\text{o}}}。\\ \end{gathered} \right.$ (1)
 $\left\{ \begin{gathered} {I_{{\text{C1\_ON}}}} = - {I_{{\text{L1}}}}，\\ {I_{{\text{C2\_ON}}}} = - {I_{{\text{L2}}}}，\\ {I_{{\text{C3\_ON}}}} = {I_{{\text{L2}}}} - {I_{{\text{L1}}}} ，\\ {I_{{\text{Co\_ON}}}} = - {I_{{\text{L1}}}} - {I_{{\text{L2}}}} - {I_{{\text{L4}}}} 。\\ \end{gathered} \right.$ (2)

 $\left\{ \begin{gathered} {V_{{\text{L1\_OFF}}}} = {V_{\text{g}}} - {V_{{\text{CO}}}} + {V_{{\text{C3}}}} ，\\ {V_{{\text{L2\_OFF}}}} = {V_{{\text{C2}}}} - {V_{{\text{C3}}}}，\\ {V_{{\text{L3\_OFF}}}} = - {V_{{\text{C2}}}} ，\\ {V_{{\text{L4\_OFF}}}} = {V_{{\text{CO}}}} - {V_{\text{o}}}。\\ \end{gathered} \right.$ (3)
 $\left\{ \begin{gathered} {I_{{\text{C1\_OFF}}}} = {I_{{\text{D1}}}} - {I_{{\text{L3}}}}，\\ {I_{{\text{C2\_OFF}}}} = {I_{{\text{D1}}}} - {I_{{\text{L2}}}}，\\ {I_{{\text{C3\_OFF}}}} = {I_{{\text{L2}}}} - {I_{{\text{L1}}}}，\\ {I_{{\text{Co\_OFF}}}} = {I_{{\text{D2}}}} - {I_{{\text{C3\_OFF}}}} - {I_{{\text{L4}}}} 。\\ \end{gathered} \right.$ (4)

 $\left\{ \begin{gathered} \int_0^{DT} {{V_{{\text{L1\_ON}}}}{\rm{d}}t + \int_{DT}^T {{V_{{\text{L1\_OFF}}}}{\rm{d}}t} = 0} ，\\ \int_0^{DT} {{V_{{\text{L2\_ON}}}}{\rm{d}}t + \int_{DT}^T {{V_{{\text{L2\_OFF}}}}{\rm{d}}t} = 0} ，\\ \int_0^{DT} {{V_{{\text{L3\_ON}}}}{\rm{d}}t + \int_{DT}^T {{V_{{\text{L3\_OFF}}}}{\rm{d}}t} = 0} ，\\ \int_0^{DT} {{V_{{\text{L4\_ON}}}}{\rm{d}}t + \int_{DT}^T {{V_{{\text{L4\_OFF}}}}{\rm{d}}t} = 0} 。\\ \end{gathered} \right.$ (5)

 $\left\{ \begin{gathered} {V_{{\text{C1}}}} = \frac{{1 - D}}{{1 - 2D}}{V_{\text{g}}} = (1 - D){V_{\text{o}}} ，\\ {V_{{\text{C2}}}} = \frac{D}{{1 - 2D}}{V_{\text{g}}} = D{V_{\text{o}}}，\\ {V_{{\text{C3}}}} = \frac{{2D}}{{1 - 2D}}{V_{\text{g}}} = 2D{V_{\text{o}}} ，\\ {V_{{\text{Co}}}} = \frac{1}{{1 - 2D}}{V_{\text{g}}} 。\\ \end{gathered} \right.$ (6)

 $\left\{ \begin{gathered} {V_{\text{S}}} = {V_{{\text{CO}}}}，\\ {V_{{\text{D1}}}} = {V_{{\text{C1}}}} + {V_{{\text{C2}}}} ，\\ {V_{{\text{D2}}}} = {V_{{\text{CO}}}}。\\ \end{gathered} \right.$ (7)

 $\left\{ \begin{gathered} {V_{\text{S}}} = \frac{1}{{1 - 2D}}{V_{\text{g}}} = {V_{\text{o}}}，\\ {V_{{\text{D1}}}} = \frac{1}{{1 - 2D}}{V_{\text{g}}} = {V_{\text{o}}}，\\ {V_{{\text{D2}}}} = \frac{1}{{1 - 2D}}{V_{\text{g}}} = {V_{\text{o}}}。\\ \end{gathered} \right.$ (8)

 $\left\{ \begin{gathered} {V_{{\rm{L1\_ON}}}} = 0 ，\\ {V_{{\rm{L1\_OFF}}}} = 0 ，\\ {V_{{\rm{L2\_ON}}}} = \frac{{(1 - D)}}{{1 - 2D}}{V_{\text{g}}} = (1 - D){V_{\text{o}}} ，\\ {V_{{\rm{L2\_OFF}}}} = \frac{D}{{1 - 2D}}{V_{\text{g}}} = D{V_{\text{o}}}，\\ {V_{{\rm{L3\_ON}}}} = \frac{{(1 - D)}}{{1 - 2D}}{V_{\text{g}}} = (1 - D){V_{\text{o}}} ，\\ {V_{{\rm{L3\_OFF}}}} = \frac{D}{{1 - 2D}}{V_{\text{g}}} = D{V_{\text{o}}}，\\ {V_{{\rm{L4\_ON}}}} = 0 ，\\ {V_{{\rm{L4\_OFF}}}} = 0 。\\ \end{gathered} \right.$ (9)

 ${V_{{\text{Co}}}} = \frac{1}{{1 - 2D}}{V_{\text{g}}} 。$ (10)
3 应力分析

 ${V_{{\text{C1}}}} = (1 - D){V_{\text{o}}} ，$ (11)
 ${V_{{\text{C2}}}} = D{V_{\text{o}}} ，$ (12)
 ${V_{{\text{C3}}}} = 2D{V_{\text{o}}} ，$ (13)
 ${V_{{\text{Co}}}} = {V_{\text{o}}} 。$ (14)

 ${V_{\text{S}}} = {V_{{\text{D1}}}} = {V_{{\text{D2}}}} = {V_{\text{o}}} 。$ (15)

 $\left\{ \begin{gathered} {I_{{\rm{C1\_ON}}}} = - {I_{{\text{L1}}}} ，\\ {I_{{\rm{C2\_ON}}}} = - {I_{{\text{L2}}}} ，\\ {I_{{\rm{C3\_ON}}}} = {I_{{\text{L2}}}} - {I_{{\text{L1}}}}，\\ {I_{{\rm{Co\_ON}}}} = - {I_{{\text{L1}}}} - {I_{{\text{L2}}}} - {I_{{\text{L4}}}} 。\\ \end{gathered} \right.$ (16)
 $\left\{ \begin{gathered} {I_{{\rm{C1\_OFF}}}} = {I_{{\text{D1}}}} - {I_{{\text{L3}}}} ，\\ {I_{{\rm{C2\_OFF}}}} = {I_{{\text{D1}}}} - {I_{{\text{L2}}}} ，\\ {I_{{\rm{C3\_OFF}}}} = {I_{{\text{L2}}}} - {I_{{\text{L1}}}} ，\\ {I_{{\rm{Co\_OFF}}}} = {I_{{\text{D2}}}} - {I_{{\rm{C3\_OFF}}}} - {I_{{\text{L4}}}} 。\\ \end{gathered} \right.$ (17)

 $D{I_{\text{S}}} + (1 - D){I_{{\text{D2}}}} - B{I_{\text{o}}} = 0，$ (18)

 $\int_0^{DT} {{i_{{\text{Ci\_ON}}}}} {\rm{d}}t + \int_{DT}^T {{i_{{\text{Ci\_OFF}}}}} {\rm{d}}t = 0{\text{ }}(i = 1,2,3,{\text{o}})$ (19)

 ${I_{\text{S}}} = \frac{2}{{1 - 2D}}{I_{\text{o}}} ，$ (20)
 $\left\{ \begin{gathered} {I_{{\text{D1}}}} = \frac{1}{{1 - 3D + 2{D^{\text{2}}}}}{I_{\text{o}}} ，\\ {I_{{\text{D2}}}} = \frac{1}{{1 - D}}{I_{\text{o}}} 。\\ \end{gathered} \right.$ (21)
 $\left\{ \begin{gathered} {I_{{\text{L1}}}} = \frac{1}{{1 - 2D}}{I_{\text{o}}} ，\\ {I_{{\text{L2}}}} = \frac{1}{{1 - 2D}}{I_{\text{o}}} ，\\ {I_{{\text{L3}}}} = \frac{1}{{1 - 2D}}{I_{\text{o}}} ，\\ {I_{{\text{L4}}}} = {I_{\text{o}}} 。\\ \end{gathered} \right.$ (22)

4 功耗分析

 图 5 带寄生参数等效电路图 Fig. 5 Equivalent circuit diagram with parasitic parameters

 $\begin{split} {P}_{\text{cond,S}}=\frac{1}{T}{\displaystyle {\int }_{0}^{T}{r}_{\text{S}}{i}_{\text{S}}^{2}}{\rm{d}}t={r}_{\text{S}}{I}_{\rm{S\_rms}}^{2}，\end{split}$ (23)

 $\begin{split} {P}_{\text{SW,S}}=&\frac{1}{T}\left({\displaystyle {\int }_{0}^{{t}_{\text{on}}}{V}_{\text{S}}{i}_{\text{S}}}{\rm{d}}t+{\displaystyle {\int }_{0}^{{t}_{\text{off}}}{V}_{\text{S}}{i}_{\text{S}}}{\rm{d}}t\right)=\\ & \frac{1}{6}{V}_{\text{S}}{f}_{\text{S}}{I}_{\text{S}}({t}_{\text{on}}+{t}_{\text{off}})，\end{split}$ (24)

 ${P_{{\text{S,Loss}}}} = {P_{{\text{cond,S}}}} + {P_{{\text{SW,S}}}} \;。$ (25)

 $\begin{split} {P}_{{\rm cond}\_{\rm{D}}{i}}=&\frac{1}{T}{\displaystyle {\int }_{0}^{T}({{V}_{\rm{FD}}{i}}_{{\text D}{i}}+{r}_{\text{D}}i_{\text{D}i}^{2})}{\rm{d}}t=\\ &{V}_{\text{FD}}{I}_{{{\rm D}i{\_{\rm{ave}}}}}+{r}_{\text{D}}{I}_{{{\rm{D}}i\_rms}}^{2}，{i}=1,2，\end{split}$ (26)

 ${P}_{{{\rm{SW}}\_{\rm{D}}{i}}}=\frac{1}{T}{\displaystyle {\int }_{0}^{{t}_{\text{b}}}{P}_{{\text D}{i}}(t)}{\rm{d}}t= \frac{1}{6}{f}_{\text{S}}{V}_{{\text D}{i}}{I}_{\text{rr}}{t}_{\text{b}}，{i}=1,2，$ (27)

 ${P_{{\rm{D\_Loss}}}} = \sum {({P_{{\rm{cond}}\_{\rm{D}}{i}}} + {P_{{\rm{SW}}\_{\rm{D}}{i}}})}，{i} = 1,2。$ (28)

 ${P_{{\text{L - Loss}}}} = {r_{{\text L}{i}}}{I^2}_{{{\text L}{i}} - rms}{\text{ }}，{i} = 1,2,3,4。$ (29)

 $\begin{split} {P_{{\rm{cond}}\_{{\rm{C}}{j}}}} =& \frac{1}{T}\left(\int_0^{DT} {{r_{{\text{C}}{j}}}i_{{{{\rm{C}}{j}}\_on}}^2} {\rm{d}}t + \int_{DT}^T {{r_{{{\text {C}}{j}}}}i_{{\rm{Cj\_off}}}^2} {\rm{d}}t\right) =\\& {r_{{\text {C}}{j}}i_{{{\rm{C}}{j}}\_rms}}^2，{j} = 1,2,3。\\ \end{split}$ (30)

 ${P_{{\rm{C\_Loss}}}} = \sum {{P_{{\rm{cond}}\_{{\rm{C}}{j}}}}}，{j}= 1,2,3。$ (31)

 $\begin{split} {P_{{\text{LOSS}}}} =& {P_{{\rm{S\_Loss}}}} + {P_{{\rm{D\_Loss}}}} + {P_{{\rm{L\_Loss}}}} + {P_{{\rm{C\_Loss}}}} = \\&{r_{{\text{DS}}}}\frac{{4D{P_{\text{o}}}}}{{{{(1 - 2D)}^2}R}} + \frac{{{f_{\text{s}}}{C_{{\text{DS}}}}{P_{\text{o}}}R}}{2} + \frac{1}{R}{r_{{\text{L4}}}}{P_{\text{o}}} +\\& \frac{{{{(1 - D)}^2} + {{(1 - 3D + 2{D^2})}^2}}}{{(1 - D){{(1 - 3D + 2{D^2})}^2}R}}{r_{\text{D}}}{P_{\text{o}}} +\\& \left(1 + \frac{1}{{1 - 2D}}\right)\frac{{{V_{{\text{FD}}}}{P_{\text{o}}}}}{{{V_{\text{o}}}}} + \frac{1}{{{{(1 - 2D)}^2}R}}{r_{{\text{L}}1}}{P_{\text{o}}} + \\& \frac{1}{{{{(1 - 2D)}^2}R}}{r_{{\text{L2}}}}{P_{\text{o}}} + \frac{1}{{{{(1 - 2D)}^2}R}}{r_{{\text{L3}}}}{P_{\text{o}}} +\\& {r_{{\text{C1}}}}\frac{{{P_{\text{o}}}}}{R}\left(\frac{D}{{{{(1 - 2D)}^2}}} + \frac{{{D^2}(1 - D)}}{{{{(1 - 3D + 2{D^2})}^2}}}\right) + \\&{r_{{\text{C2}}}}\frac{{{P_{\text{o}}}}}{R}\left(\frac{D}{{{{(1 - 2D)}^2}}} + \frac{{{D^2}(1 - D)}}{{{{(1 - 3D + 2{D^2})}^2}}}\right) + \\&{r_{{\text{Co}}}}\frac{{{P_{\text{o}}}}}{R}\left(D + \frac{{{D^2}}}{{1 - D}}\right) 。\end{split}$ (32)
5 参数设计 5.1 电感参数设计

 $L \geqslant \frac{{{V_{\text{L}}}D}}{{{f_{\text{S}}}\Delta {I_{\text{L}}}}} 。$ (33)

 $\Delta {I_{\text{L}}} = {r_{\text{L}}}{i_{\text{L}}} ，$ (34)

 $\left\{ \begin{gathered} {L_{\text{1}}} \geqslant 0 ，\\ {L_2} \geqslant \frac{{D(1 - D)(1 - 2D){R_{\text{L}}}}}{{{f_{\text{S}}}{r_{\text{L}}}}} ，\\ {L_3} \geqslant \frac{{D(1 - D)(1 - 2D){R_{\text{L}}}}}{{{f_{\text{S}}}{r_{\text{L}}}}} ，\\ {L_4} \geqslant 0 。\\ \end{gathered} \right.$ (35)
5.2 电容参数设计

 $C \geqslant \frac{{D{I_{\text{C}}}}}{{{f_{\text{S}}}\Delta {V_{\text{C}}}}} \;。$ (36)

 $\Delta {V_{\text{C}}} = {r_{\text{C}}}{V_{\text{C}}} ，$ (37)

 $\left\{ \begin{gathered} {I_{{\rm{C1\_ON}}}} = \frac{{{I_{\text{o}}}}}{{1 - 2D}} ，\\ {I_{{\rm{C2\_ON}}}} = \frac{{{I_{\text{o}}}}}{{1 - 2D}} ，\\ {I_{{\rm{C3\_ON}}}} = 0 ，\\ {I_{{\rm{Co\_ON}}}} = {I_{\text{o}}} 。\\ \end{gathered} \right.$ (38)

 $\begin{gathered} {C_1} \geqslant \frac{D}{{(1 - 2D)(1 - D){f_{\text{S}}}{r_{\text{C}}}{R_{\text{L}}}}} ，\\ {C_2} \geqslant \frac{1}{{(1 - 2D){f_{\text{S}}}{r_{\text{C}}}{R_{\text{L}}}}} ，\\ {C_2} \geqslant 0 ，\\ {C_2} \geqslant \frac{D}{{{f_{\text{S}}}{r_{\text{C}}}{R_{\text{L}}}}} 。\\ \end{gathered}$ (39)

5.3 开关管和二极管参数设计

6 实验验证

 图 6 样机实验波形 Fig. 6 The experimental oscillograms of prototype

 图 7 样机效率曲线 Fig. 7 The efficiency curve of prototype
7 结　语

 [1] 许建. 现代潜艇设计理论与技术[M]. 哈尔滨: 哈尔滨工程大学出版社, 2019: 21–22. [2] 张铁栋, 姜大鹏, 盛明伟, 等. 无人无缆潜水器技术[M]. 上海: 上海交通大学出版社, 2018: 38–40. [3] 董鹏, 杨清轩, 刘洋. 国外新型外界援潜救生装备发展研究[J]. 舰船科学技术, 2018, 40(6): 152-157. DONG Peng, YANG Qing-xuan, LIU Yang. Research on the development of new types of foreign submarine rescue system[J]. Ship Science and Technology, 2018, 40(6): 152-157. DOI:10.3404/j.issn.1672-7649.2018.06.032 [4] 牟少芳. 深潜救生艇操纵训练模拟器控制系统研究与实现[D]. 青岛:青岛理工大学, 2017: 1–4. [5] 钟后阳, 丁新平, 赵德林, 等. 深潜救生艇电力系统新型变换器研究[J]. 海军工程大学学报, 2021, 33(6): 37-43. DOI:10.7495/j.issn.1009-3486.2021.06.007 [6] 卢北虎, 刘飞, 金鑫, 等. 锂离子动力电池应用于深潜救生艇的可行性分析[J]. 船电技术, 2018, 38(5): 5-7. DOI:10.3969/j.issn.1003-4862.2018.05.002 [7] 高伟, 罗全明, 吕星宇, 等. 一种三绕组零纹波高增益DC/DC变换器[J]. 中国电机工程学报, 2018, 38(1): 232-241. DOI:10.13334/j.0258-8013.pcsee.161847 [8] F. M. Shahir, E. Babaei, M. Farsadi. A new structure for nonisolated boost DC-DC converter[J]. Journal of Circuits, Systems and Computers, 2017, 26(1): 1142-1168.