﻿ 燃料电池-锂电池混合动力船舶的能量管理优化
 舰船科学技术  2023, Vol. 45 Issue (7): 106-110    DOI: 10.3404/j.issn.1672-7649.2023.07.021 PDF

Optimization of energy management for fuel cell-lithium battery hybrid ship
CHEN Xu-ran, GUO Yi
Logistics Engineering College, Shanghai Maritime University, Shanghai 201306, China
Abstract: The fuel cell-lithium battery hybrid power ship uses fuel cells as the main power source and lithium batteries as the auxiliary power source. For hybrid power systems, energy management strategies (EMS) need to be used for research to allocate the output power of each power source. In order to improve hydrogen fuel economy and system life, an external energy efficiency maximization strategy based on power decoupling is proposed. Modeling simulation analysis, and compared with the dual closed-loop PI control strategy and the external energy efficiency maximization strategy (EEMS) to verify its effectiveness. The results show that the proposed strategy can meet the power requirements of ships under typical working conditions, effectively reduce hydrogen fuel consumption, and increase the utilization rate of lithium batteries, thereby using the characteristics of hybrid power systems to improve hydrogen fuel economy and make the entire system able to run efficiently overall.
Key words: fuel cell     hybrid ship     energy management     power distribution
0 引　言

1 燃料电池船混合动力系统

 图 1 混合动力系统拓扑结构图 Fig. 1 Topology diagram of hybrid power system

1.1 燃料电池模型

 图 2 燃料电池数学模型 Fig. 2 Mathematical model of fuel cell

 ${V_{stack}} = n \cdot {V_{cell}},$ (1)
 ${V_{stack}} = n \cdot \left( {{E_{N{\text{er}}nst}} + \Delta {E_{act}} + \Delta {E_{ohmic}} + \Delta {E_{con}}} \right)。$ (2)

1.2 锂电池模型

 图 3 锂电池模型 Fig. 3 Lithium battery model

 $E = {E_S} - K\left( {\frac{Q}{{Q - \int {{i}\left( t \right){\rm{d}}t} }}} \right)i - Ni + A{e^{ - \frac{B}{Q} * \int {i\left( t \right){\rm{d}}t} }} 。$ (3)

 ${V_{batt}} = E - {I_{batt}} \cdot {R_{{int} }}。$ (4)

2 能量管理策略 2.1 双闭环PI控制策略

 图 4 双闭环PI控制策略结构 Fig. 4 Double closed-loop PI control strategy structure

 $SOC\left( t \right) = SO{C_0} + \Delta SOC = SO{C_0} - {\eta _{b,col}} \text{×} \frac{{\displaystyle\int _0^\tau {I_{{\text{b}}at}}\left( t \right){\rm{d}}t }}{Q} \text{×} 100 。$ (5)

2.2 外部能效最大化策略

 图 5 外部能效最大化策略结构 Fig. 5 External energy efficiency maximization strategy structure

$x = \left[ {{P_{FC}},\Delta V} \right]$ $G = \left[ {{P_{FC}}\Delta T,{Q_{batt}}} \right]$ 。其中 $x$ 为最优解， $G$ 为成本函数。

 ${P_{FC}}\Delta T \leqslant \left( {SOC - SO{C_{\min }}} \right){V_{FC{\text{r}}}}{Q_{FC}},$ (6)

 ${P_{FC\min }} \leqslant {P_{FC}} \leqslant {P_{FC\max }} ,$ (7)
 ${V_{dc\min }} - {V_{dc}} \leqslant \Delta V \leqslant {V_{dc\max }} - {V_{dc}}。$ (8)

2.3 改进外部能效最大化策略

 图 6 改进外部能效最大化策略结构 Fig. 6 Improve the external energy efficiency maximization strategy structure

 图 7 离线优化算法 Fig. 7 Off-line optimization algorithm

 $H = \sum\limits_{k = 1}^n {{P_{fc}}\left( k \right) \cdot } \Delta T ,$ (9)

 $y = \left( {k + 1} \right) \leqslant \left( {SO{C_0} - SO{C_{\min }}} \right){V_{battr}}Q,$ (10)
 $\sum\limits_{k = 1}^n {{P_{fc}}\left( k \right)} \geqslant n \cdot {P_{fc\min }},$ (11)
 $y\left( {k + 1} \right) = y\left( k \right) + \left( {{P_{load}}\left( k \right) - {P_{fc}}\left( k \right)} \right)\Delta T ,$ (12)

 ${P_{fc\min }} \leqslant {P_{fc}} \leqslant {P_{fc\max }}。$ (13)

 $ConsH_2^{opt} = \frac{N}{F}\sum\limits_{k = 1}^n {i_{fc}^{opt}} \left( k \right) \cdot \Delta T 。$ (14)

3 仿真分析

 图 8 船舶典型工况 Fig. 8 Typical ship condition

 图 10 动力源的能量消耗 Fig. 10 Energy consumption of power source

 图 9 动力源的输出功率 Fig. 9 Power output of the power source

4 结　语

 [1] 杨发财, 李世安, 沈秋婉, 等. 绿色航运发展趋势和燃料电池船舶的应用前景[J]. 船舶工程, 2020, 42(278): 46-52. DOI:10.13788/j.cnki.cbgc.2020.04.01 [2] HAN J, CHARPENTIER J F, TANG T. An energy management system of a fuel cell/battery hybrid boat[J]. Energies, 2014, 7(5): 2799-2820. DOI:10.3390/en7052799 [3] NELSON D B, NEHRIR M H, WANG C. Unit sizing and cost analysis of stand-alone hybrid wind/PV/fuel cell power generation systems[J]. Renewable Energy, 2006, 31(10): 1641-1656. DOI:10.1016/j.renene.2005.08.031 [4] 彭东恺, 朱礼斯, 韩金刚, 等. 船舶燃料电池-蓄电池混合动力系统能量管理策略及仿真分析[J]. 系统仿真学报, 2014, 26(11): 2797-2802. DOI:10.16182/j.cnki.joss.2014.11.043 [5] ERDINC O, VURAL B, UZUNOGLU M. A wavelet-fuzzy logic based energy management strategy for a fuel cell/battery/ultra-capacitor hybrid vehicular power system[J]. Journal of Power Sources, 2009, 194(1): 369-380. DOI:10.1016/j.jpowsour.2009.04.072 [6] LI L, ZHANG YB, YANG C, et al. Model predictive control-based efficient energy recovery control strategy for regenerative braking system of hybrid electric bus[J]. Energy Convers Manage, 2016,111: 299–314. [7] HOU J, SONG Z, HOFMANN H, et al. Adaptive model predictive control for hybrid energy storage energy management in all-electric ship microgrids[J]. Energy Conversion and Management, 2019, 198: 111929. DOI:10.1016/j.enconman.2019.111929 [8] 张泽辉, 高海波, 管聪, 等. 典型工况下的燃料电池船舶复合储能系统设计[J]. 船舶工程, 2018, 40(8): 103-108. DOI:10.13788/j.cnki.cbgc.2018.08.100 [9] AMPHLETT J C, BAUMERT R M, MANN R F, et al. Performance modeling of the Ballard Mark IV solid polymer electrolyte fuel cell: I. Mechanistic model development[J]. Journal of the Electrochemical Society, 1995, 142(1): 1. DOI:10.1149/1.2043866 [10] TREMBLAY O, DESSAINT L A, DEKKICHE A I. A generic battery model for the dynamic simulation of hybrid electric vehicles[C]//2007 IEEE Vehicle Power and Propulsion Conference. IEEE, 2007: 284−289. [11] ZHANG Y, SONG W, LIN S, et al. A novel model of the initial state of charge estimation for LiFePO4 batteries[J]. Journal of Power Sources, 2014, 248: 1028-1033. DOI:10.1016/j.jpowsour.2013.09.135 [12] MOTAPON S N, DESSAINT L A, AL-HADDAD K. A robust H2-consumption-minimization-based energy management strategy for a fuel cell hybrid emergency power system of more electric aircraft[J]. IEEE Transactions on Industrial Electronics, 2014, 61(11): 6148-6156. DOI:10.1109/TIE.2014.2308148 [13] BERNARD J, DELPRAT S, BUECHI F, et al. Global optimisation in the power management of a fuel cell hybrid vehicle (FCHV)[C]//2006 IEEE Vehicle Power and Propulsion Conference. IEEE, 2006: 1−6.