﻿ 嵌入式控制技术在减摇鳍自适应控制器的应用
 舰船科学技术  2023, Vol. 45 Issue (7): 58-61    DOI: 10.3404/j.issn.1672-7649.2023.07.012 PDF

Application of embedded control technology in adaptive controller of fin stabilizer
SUN Ying-pei, YOU Dong-mei
Hebi Institute of Engineering and Technology, Henan Polytechnic University, Hebi 458030, China
Abstract: Large ships sailing in bad weather conditions, by the capsizing moment caused by wind and waves, the ship roll motion is very intense, when the roll motion exceeds the ship's own balance position, it is easy to appear ship sinking and other serious accidents. In order to improve the stability of ships under wind and wave conditions, anti-roll fin is usually used as an effective technology. Anti-roll fin will generate anti-capsizing bending moment under the action of sea waves to improve the stability of ships. This paper analyzes the working principle of ship roll stabilizer fin, develops an adjustable ship roll stabilizer fin controller based on embedded technology, and introduces the principle of adaptive controller in detail. The simulation results show that the system can effectively improve the stability of ship roll motion.
Key words: embedded     anti-roll fin     self-adaptation
0 引　言

1 船舶横摇运动数学建模与减摇原理分析

 图 1 船舶的力学模型 Fig. 1 Mechanical model of ships

 \left\{ {\begin{aligned} & {\left( {{J_{}} + \Delta {J_{}}} \right)w + 2\kappa w + \frac{1}{2}Dh\theta = {T_0}} \text{，}\\ & {M\dot v\sin \theta + M\dot u\cos \theta = {F_0}} \text{。} \end{aligned}} \right.

 $T = \sqrt 2 {\text π} \sqrt {\frac{{w + \Delta w}}{{D\sin \theta }}} 。$

 图 2 减摇鳍的力学模型 Fig. 2 Mechanical model of fin stabilizer

 ${M_o} = \frac{1}{2}{k_1}{k_2}L_b^2B(\delta + 0.8) \cdot {10^{ - 2}}\;{\rm{kN}} \cdot {\rm{m}} \text{。}$

 ${k_1} = 4.5{\left( {\frac{{{L_b}}}{{980}} - 0.2} \right)^2} + 0.82 \text{，} {k_2} = 9 - 0.96{\left( {\frac{{300 - {L_b}}}{{100}}} \right)^2} 。$

 ${M_n} = {e^{ - 0.00023}}\frac{{{L_b}{B^2}{C_t}}}{{10000}}\left( {1.7 + 1.5\frac{\alpha }{{{h_0}}}} \right) 。$

 $- {F_0} = {F_k} = \frac{1}{2}{\rho _0}S \cdot \delta {V_1}^2 。$

 $- {T_0} = \sqrt {\left( {{M_0}^2 + {M_n}^2} \right)} = \frac{1}{2}h\sin \theta {F_s}\cos \alpha \text{。}$
2 基于嵌入式控制技术的减摇鳍自适应控制器开发 2.1 嵌入式控制系统设计

 图 3 基于嵌入式控制技术的减摇鳍自适应控制系统原理 Fig. 3 Principle of adaptive control system for fin stabilizer based on embedded control technology

1）测量元件

2）嵌入式控制器

3）随动系统

4）辅助部分

1）横摇运动传递函数

 ${G_\phi }(s) = \frac{{\phi (s)}}{{\alpha (s)}} = \frac{1}{{2.05{s^2} + 0.389s + 1}} \text{。}$

2）测量元件传递函数

 ${G_o}(s) = \frac{{400s}}{{{s^2} + 80s + 4000}} 。$

3）随动系统传递函数；

 ${G_Q}(s) = \frac{{{K_Q}}}{{(30s + 1)(0.56s + 1)}} \text{，}$

4）嵌入式控制器的传递函数

 ${G_{qrs}}(s) = {K_p} + \displaystyle\frac{{{K_I}}}{{24.607s + 1}} + \displaystyle\frac{{0.064{K_D}s}}{{(0.064s + 1)(0.18s + 1)}}。$

 图 4 船舶横摇角度曲线 Fig. 4 Curve of ship roll angle
2.2 主动式减摇鳍的形状设计及仿真

 ${L^2} = \frac{{3.5\cdot{B_0}\cdot{D_0}}}{{{T^2}\cdot{V^2}}} \text{，}$

 图 5 两种波浪高度下的横摇角度控制曲线 Fig. 5 Roll angle control curves for two wave heights
3 结　语

 [1] 高宇辉, 李晖, 张华健, 等. 基于NFTSM的吊舱推进器与减摇鳍联合减摇控制[J]. 船舶工程, 2022, 44(6): 100–108. GAO Yu-hui, LI Hui, ZHANG Hua-jian, et al. Combined rolling Control of Pod Propeller and Fin based on NFTSM [J]. Ship Engineering, 202, 44(6): 100–108. [2] 许炀垲, 梁玉珂, 沈林维. 减摇鳍在零航速船舶减摇运动中的应用[J]. 船舶力学, 2022, 26(5): 645–652. XU Yang-kai, LIANG Yu-ke, SHEN Lin-wei. Application of anti-roll fin in anti-roll motion of ships with zero speed [J]. Journal of Ship Mechanics, 202, 26(5): 645–652. [3] 李乐宇, 吴建威, 万德成. 基于CFD的带附体KCS船在波浪中的阻力及纵摇优化[J]. 中国舰船研究, 2022, 17(2): 63–72. LI Le-yu, WU Jian-wei, WAN De-cheng. Optimization of resistance and pitch of KCS Ship with attached body in waves based on CFD [J]. Chinese Journal of Ship Research, 202, 17(2): 63–72. [4] 魏跃峰, 杨奕, 白庆虹, 等. 船舶零航速减摇技术研究[J]. 中国造船, 2021, 62(4): 180-189. WEI Yue-feng, YANG Yi, BAI Qing-hong, et al. Research on zero speed rolling reduction technology of Ships[J]. Shipbuilding of China, 2021, 62(4): 180-189. DOI:10.3969/j.issn.1000-4882.2021.04.014 [5] 赵云瑞, 高海波, 林治国, 等. 基于组合赋权-TOPSIS法的极地邮轮减摇鳍选型评价[J]. 中国舰船研究, 2021, 16(5): 121–126+149. ZHAO Yun-rui, GAO Hai-bo, LIN Zhi-guo, et al. Evaluation of fin selection for polar cruise ship based on combination weighting and TOPSIS method [J]. Chinese Journal of Ship Research, 201, 16(5): 121-126+149. [6] 姚恺涵, 尤方骏, 张帅, 等. 船舶减摇装置的发展现状与趋势[J]. 船舶物资与市场, 2019(1): 16-20. YAO Kai-han, YOU Fang-jun, ZHANG Shuai, et al. Current situation and trend of ship roll damping device[J]. Ship Materials & Market, 2019(1): 16-20. DOI:10.19727/j.cnki.cbwzysc.2019.01.001