﻿ 利用单频声强干涉特征估计目标运动参数
 舰船科学技术  2023, Vol. 45 Issue (1): 167-170    DOI: 10.3404/j.issn.1672-7649.2023.01.030 PDF

The target motion parameters estimation using single-band sound intensity interference feature
LI Dan-yang
Basic Science Department, Air Force Engineering University, Xi′an 710051, China
Abstract: Shallow sea target parameter estimation is that the area of water is urgently needed to solve important problems. This paper proposes a method of estimating the target motion parameters using a single-band sound intensity interference feature. The relative position of the target and the hydrophone changes over time, using the moving target single-frequency sound to the spectral peak. The peak value is related to the radial speed of the target in the time interval. As the target movement, the radial speed corresponding to different time intervals changes, and the radial speed can be drawn with time to change the pseudo chart. The radial speed time variation curve can be obtained by the target parameter search value, and the spectrum of the pseudo-color map is fitted to the pseudo-color map, and the estimate of the target parameter is achieved. The simulation results show that the method is given through parameter search to fit the consistent curve with the striped trend in the pseudo chart. At this point, the corresponding parameters are estimated values. As a result, the estimated value is basically consistent with the actual value.
Key words: sound strong interference characteristics     radial speed     parameter estimation
0 引　言

1 理论介绍

 $\begin{gathered} p\left( {r,\omega } \right){{ = }}S\left( \omega \right)\frac{i}{{\rho \left( {{z_s}} \right)\sqrt {8\pi } }}{e^{ - i\pi /4}}\mathop \sum \limits_{m = 1}^M {{{\varPsi }}_m}\left( {{z_s}} \right){{{\varPsi }}_m}\left( {{z_r}} \right)\frac{{{e^{i{k_{rm}}r}}}}{{\sqrt {{k_{rm}}r} }} \\ {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \mathop = \limits^{{\Delta }} \mathop \sum \limits_{m = 1}^M {B_m}{e^{i{k_{rm}}r}}。\\ \end{gathered}$ (1)

 $\begin{gathered} I\left( {r,\omega } \right) \propto p\left( {r,\omega } \right) * {p^ * }\left( {r,\omega } \right)= \\ {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\left| {S\left( \omega \right)} \right|^2}\left( {\mathop \sum \limits_{m{{ = 1}}}^M B_m^2 + 2\mathop \sum \limits_{m = 1}^M \mathop \sum \limits_{n = 1,n \ne m}^M {B_m}B_n^ * \cos \left( {{k_{mn}}r} \right)} \right)。\\ \end{gathered}$ (2)

 $I\left( {r,\omega } \right) = {\left| {S\left( \omega \right)} \right|^2}\sum\limits_l^L {{A_l}\cos \left( {{k_l}r} \right)} 。$ (3)

 ${r_t} = {r_{{t_1}}} + {\bar v_r}t，$ (4)

 $I\left( {{v_r},\omega } \right) = {\left| {S\left( \omega \right)} \right|^2}\sum\limits_l^L {{A_l}} \cos \left( {{k_l}{{\bar v}_r}t} \right)，$ (5)

 ${f_l} = {k_l}\left( f \right){\bar v_r}/2\text{π}，$ (6)

 ${\bar v_r} = 2\pi {f_l}/{k_l}\left( f \right)，$ (7)

 \begin{aligned} {v_r}\left( t \right) & =\frac{{{\text{δ}} r\left( t \right)}}{{{\text{δ}} t}}= & \\ & \left| {\frac{{\sqrt {r_{{{cpa}}}^2 + {{\left( {t - {t_{{{cpa}}}}} \right)}^2}{v_0}} - \sqrt {r_{{{cpa}}}^2 + {{\left( {t - {t_{{{cpa}}}} - \delta t} \right)}^2}v_0^2} }}{{\delta t}}} \right|。\\ \end{aligned} (8)

2 数值仿真

 图 1 随时间起伏变化的声强 Fig. 1 The intensity of sound fluctuating over time

 图 2 时间区间1 500～2 100 s内的单频声强变化的周期频率 Fig. 2 The cycle frequency of single-frequency sound intensity in time interval 1500 ~ 2100 s

 图 3 时间区间600 s内的150 Hz单频声强变化的周期频率随时间0～7 000 s的变化规律 Fig. 3 The cycle frequency of the 150 Hz single-frequency sound in the time interval 600 s changes with time 0～7 000 s

3 结　语

 [1] 王二庆, 杨奋. 基于Bartlett加权的水下近场多源精确定位[J]. 舰船科学技术, 2012, 34(11): 108–111. WANG ER Q, YANG F. Accurate location of underwater near field multiple sources based on Bartlett weighting[J]. Ship Science and Technology 2012, 34(11): 108–111. [2] 程善政, 陈双, 何心怡. 一种目标运动要素纯方位解算方法[J]. 舰船科学技术, 2020, 42(23): 129–132. CHENG S Z, Chen S, HE X Y. A bearing-only method for solving target motion elements[J]. Ship Science and Technology, 2020, 42(23): 129–132. [3] 梁民赞, 孟华, 陈迎春, 等. 水声环境复杂性对声呐探测距离的影响[J]. 舰船科学技术, 2013, 35 (4): 45–48. LIANG M Z, MENG H, CHEN Y C, et al. Influence of complexity of underwater acoustic environment on sonar detection range[J]. Ship Science and Technology, 2013, 35; (4) 45–48. [4] FERGUSON B G, QUINN B G. Application of the short-time Fourier transform and the Wigner-Ville distribution to the acoustic localization of aircraft[J]. The Journal of the Acoustical Society of America, 1994, 96(2): 821-827. DOI:10.1121/1.410320 [5] FERGUSON B G, KAM W. Transiting aircraft parameter estimation using underwater acoustic sensor data[J]. IEEE Journal of Oceanic Engineering, 1999, 24(4): 424-435. DOI:10.1109/48.809262 [6] RAKOTONARIVO S T, KUPERMAN W A. Model-independent range localization of a moving source in shallow water[J]. The Journal of the Acoustical Society of America, 2012, 132(4): 2218-2223. DOI:10.1121/1.4748795 [7] YANG T C. Source depth estimation based on synthetic aperture beamforming for a moving source[J]. The Journal of the Acoustical Society of America, 2015, 138(3): 1678-1686. DOI:10.1121/1.4929748 [8] DU J Y, LIU Z W, LÜ L G. Range localization of a moving source based on synthetic aperture beamforming using a single hydrophone in shallow water[J]. Applied Science, 2020, 10: 1-12. [9] JENSEN F, KUPERMAN W, PORTER M, et al. Computational Ocean Acoustics[J]. Computers in Physics, 1995. [10] 于梦枭, 周士弘. 一种相对浅海运动声源相对速度估计方法[C]//2018年全国声学大会论文集, 2018: 120–121.