﻿ 通用型FPSO压载水管路系统震动控制研究
 舰船科学技术  2023, Vol. 45 Issue (1): 125-128    DOI: 10.3404/j.issn.1672-7649.2023.01.022 PDF

Research on vibration control of unicersal FPSO ballast water piping system
ZHANG Xiao-liu, DOU Pei-lin, LU Kai
Jiangsu University of Science and Technology, Zhenjiang 212003, China
Abstract: The safety of FPSO key pipeline system is directly related to the safety of the whole FPSO. The vibration problem of pipeline system in the process of operation will often lead to direct economic losses. Therefore, it is very important to carry out the vibration control research of pipeline system. Using the Workbench modal analysis was carried out on the piping system. By studying the variation law of the natural frequency of the pipeline, the resonance area is avoided and the mechanical resonance is prevented, which provides ideas for the pipeline system in the design stage; For the pipeline system that requires anti-vibration, establish a suitable pipeline mechanics model for theoretical derivation, and obtain the corresponding calculation formula for the safety span of the pipeline system, and the theoretical span of the pipeline is calculated to determine the support layout of the pipeline, so as to prevent the excessive amplitude of the pipeline.
Key words: universal FPSO     modal analysis     vibration reduction control
0 引　言

1 管道固有频率变化规律研究及管道支吊架设计的研究 1.1 管道固有频率变化规律研究

 图 1 3种管道布置方案模态计算结果曲线 Fig. 1 Modal calculation results curve of three pipeline layout schemes

 图 2 不同管径前6阶模态计算结果曲线 Fig. 2 Calculation results of the first six modes for different pipe diameters

 图 3 不同约束方式前6阶模态计算结果曲线 Fig. 3 Calculation results of the first six modes with different constraints

 图 4 不同约束间距前6阶模态计算结果曲线 Fig. 4 Calculation results curve of the first six modes with different constraint spacing

1）不同管道布置方式对管道固有频率有很大的影响，弯头的数量越少，相应阶数的固有频率就越小，反之在相同阶数下的固有频率越大。在管道设计阶段应减少弯头数[2]

2）不同管道直径对管道的频率有一定的影响，管道直径越大，刚度也随之增大，柔性减小，固有频率随之增大，在管道的设计阶段，可以考虑扩大管径增加管道的固有频率，从而避开共振区域[3]

3）不同约束方式对管道的频率有一定的影响，全固定约束比单向和双向约束刚度要大，固有频率要高，在管道的设计阶段，应考虑对管道节点使用全固定约束。

4）不同约束间距距对管道固有频率有一定的影响，对于同一条管道，限制间距越小，即限制的数目越多，管道的变形能力越小，管道的刚度越大，管道的各阶固有频率也越大[4]

1.2 管道允许跨距的理论求解

 图 5 连续管道力学模型 Fig. 5 Mechanical model of continuous pipeline

 ${\theta _{10}} = {\theta _{12}} \Rightarrow \frac{{ML}}{{3{E_t}I}} - \frac{{W{L^3}}}{{24{E_t}I}} = \frac{{ML}}{{3{E_t}I}} - \frac{{WL}}{{6{E_t}I}} + \frac{{W{L^3}}}{{24{E_t}I}} \Rightarrow \frac{{WL}}{{10}} ，$ (1)

 ${M_{\max }} = \frac{{WL}}{{10}}，$ (2)

 ${\sigma _{\max }} = \frac{5}{{384}}\frac{{W{L^4}}}{{{E_t}I}} - \frac{{2M{L^2}}}{{16{E_t}I}} = \frac{1}{{1920}}\frac{{W{L^4}}}{{{E_t}I}}，$ (3)

 ${\sigma _{\max }} = \frac{5}{{384}}\frac{{W{L^4}}}{{{E_t}I}} - \frac{{M{L^2}}}{{16{E_t}I}} = \frac{{13}}{{1920}}\frac{{W{L^4}}}{{{E_t}I}}，$ (4)

 $\sigma = \frac{{{M_{\max }}}}{Z} \leqslant \left[ {{\sigma _w}} \right]，$ (5)

 ${L_1} = 0.1\sqrt {\frac{{Z\left[ {{\sigma _w}} \right]}}{W}} = 0.1\sqrt {\frac{{Z\left[ \sigma \right]}}{{2W}}} ，$ (6)

 ${\sigma _{\max }} = \frac{{13}}{{1920}}\frac{{W{L^4}}}{{{E_t}I}} \leqslant \left[ \delta \right] ，$ (7)

 ${L_2} = 0.0196\sqrt {\frac{{{E_t}I\left[ \delta \right]}}{W}}，$ (8)

 $L = \min \left\{ {{L_1},{L_2}} \right\}。$ (9)

1.3 管道允许跨距的数值计算

 图 6 设计编号1变形图 Fig. 6 Design No.1 deformation drawing

 图 7 设计编号2变形图 Fig. 7 Design No.2 deformation drawing

 图 8 设计编号3变形图 Fig. 8 Design No.3 deformation drawing

 图 9 设计编号4变形图 Fig. 9 Design No.4 deformation drawing

2 结　语

 [1] 战海云. 某蒸汽管段的振动及减振分析[J]. 山东化工, 2019, 48(7): 122-123+126. ZHAN Haiyun. Vibration and vibration reduction analysis of steam pipeline system[J]. Shandong chemical industry, 2019, 48(7): 122-123+126. DOI:10.19319/j.cnki.issn.1008-021x.2019.07.049 [2] 郑成成, 陈永祁, 郑久建. 核电厂主蒸汽管道阻尼减振与抗震分析[J]. 核安全, 2021, 2(1): 27-35. DOI:10.16432/j.cnki.1672-5360.2021.01.006 [3] 侯慧敏, 周冬蒙, 田俊姣. 泵站压力管道振动特性分析及减振优化设计[J]. 水电能源科学, 2020, 38(8): 95–99. HOU Huimin, ZHOU Dongmeng, TIAN Junjiao. Vibration characteristics analysisand vibration reduction optimization designof pump station pressure pipeline[J]. Hydropower Energy Science, 2020, 38(8): 95–99. [4] 刘鑫, 张磊, 刘子健. 压力管道振动原因分析及减振措施[J]. 中国石油和化工标准与质量, 2020, 40(7): 32–33. [5] 屈铎, 楼京俊, 张振海. 基于动网格的球阀流场动态特性分析[J]. 海军工程大学学报, 2017, 29(4): 26-30. QU Duo, LOU Jingjun, ZHANG Zhenhai. Numerical simulation of dynamic flow field of ball valve based on dynamic mesh[J]. Journal of Naval University of Engineering, 2017, 29(4): 26–30. [6] 李磊鑫, 李越峰, 李峰. 空调压缩机管路系统动态分析与优化研究[C]//中国家用电器协会. 2016年中国家用电器技术大会论文集, 2016: 5. [7] 赵颖, 张宇辉, 赵彬. 某CNG子站撬装压缩机组结构静、动态分析[J]. 压缩机技术, 2016(2): 1–5+10. [8] GU Zhenjie, BAI Changqing, ZHANG Hongyan. Nonlinear dynamic modeling and fluid–mechanism interaction analysis of reciprocating pump–pipeline system[J]. Proceedings of the Institution of Mechanical Engineers, 2021, 235(6). [9] WANG Wenhe, MOU Dan, LI Feng. Dynamic failure probability analysis of urban gas pipeline network[J]. Journal of Loss Prevention in the Process Industries, 2021(prepublish). [10] JANSEN R, MORSCHETT H, WIECHERT W, et al. A fully automated pipeline for the dynamic at-line morphology analysis of microscale Aspergillus cultivation. [J]. Fungal Biology and Biotechnology, 2021, 8(1).