﻿ 基于压缩空气方案的船舶压排载系统设计及优化
 舰船科学技术  2023, Vol. 45 Issue (1): 64-69    DOI: 10.3404/j.issn.1672-7649.2023.01.012 PDF

Optimal design of the ship compressed air ballast/deballast system
YU Shu-wen, WAN Xin-bin, YANG Wei-ying
Marine Design and Research Institute of China, Shanghai 200011, China
Abstract: Under sailing or loading conditions, the ship ballast/deballast system is primarily used to adjust the yield of water of the ballast tanks to make the ship sink or float operation and adjust ship stability.Take the case for a ship ballast/deballast system,the preliminary design is carried out by simplifying estimation. The resistance simulation model is built to analysis and summary the actual working dynamic characteristics of the ship ballast/deballast system.And the optimal design of the ship ballast/deballast system is finally done to meet the target requirements .
Key words: the ship ballast/deballast system     compressed air     resistance calculation     optimal design
0 前　言

1 压缩空气压排载系统设计

 图 1 压缩空气压排载系统原理图 Fig. 1 Schematic diagram of compressed air ballast/deballast system

1.1 压载舱重力浸水压载计算

 $v = \mu \sqrt {2{\text{g}}\Delta h} ，$ (1)

 $vA{\rm{d}}t = {\rm{d}}V = S{\rm{d}}h 。$ (2)

1.2 压载舱压缩空气排载计算

 ${{P}}_{b}={{P}}_{ h}+{{P}}_{ p}+{{P}}_{0} 。$ (3)

 ${Q_0} = W/t = \frac{{{{V}} \cdot ({P_c} + {P_0})}}{{{P_0} \cdot t}}。$ (4)

 ${D}_{舱}=\sqrt{4\times {V}_{0}/\text{π} /v/t}。$ (5)

2 压缩空气压排载系统阻力模型

2.1 压载舱重力浸水过程阻力计算模型

 $H = aX + bY + c。$ (6)

 $p = {p_0} + \rho gH 。$ (7)

 图 2 重力浸水压载过程的控制流程 Fig. 2 The control flow of the gravity ballast process

 图 3 压载舱重力浸水过程模型 Fig. 3 The simulation model of the gravity ballast process
2.2 压载舱压缩空气排载过程阻力计算模型

 图 4 排载空压机性能曲线 Fig. 4 The characteristic curve of the deballast air compressor

 图 5 压载舱压缩空气排载过程模型 Fig. 5 The simulation model of the compressed air deballast process
3 压缩空气压排载系统阻力计算 3.1 压载舱重力浸水过程阻力计算

 图 6 1号压载舱仿真计算结果 Fig. 6 The simulation result of the No.1 ballast tank

 图 10 5号压载舱仿真计算结果 Fig. 10 The simulation result of the No.5 ballast tank

 图 7 2号压载舱仿真计算结果 Fig. 7 The simulation result of the No.2 ballast tank

 图 8 3号压载舱仿真计算结果 Fig. 8 The simulation result of the No.3 ballast tank

 图 9 4号压载舱仿真计算结果 Fig. 9 The simulation result of the No.4 ballast tank
3.2 压载舱压缩空气排载过程阻力计算

 图 11 1号压载舱仿真计算结果 Fig. 11 The simulation result of the No.1 ballast tank

 图 12 2号压载舱仿真计算结果 Fig. 12 The simulation result of the No.2 ballast tank

 图 13 3号压载舱仿真计算结果 Fig. 13 The simulation result of the No.3 ballast tank

 图 14 4号压载舱仿真计算结果 Fig. 14 The simulation result of the No.4 ballast tank

 图 15 5号压载舱仿真计算结果 Fig. 15 The simulation result of the No.5 ballast tank

 图 16 1号和4号压载舱内空气压力计算结果 Fig. 16 The air pressure result of the No.1 and No.4 ballast tank
4 压缩空气压排载系统优化设计

1）吸真空方案

2）调整管路通径方案

5 结　语

 [1] 周卓亮, 蔡洁. 5000 t半潜船压缩空气压载系统设计研究[J]. 船舶, 2013, 24(5): 57−62. [2] 张宁. 65000吨半潜船压载和透气系统设计[J]. 科学技术创新, 2019(20): 28−30. [3] 吴持恭. 水力学[M]. 北京: 高等教育出版社. 2007. [4] 刘振东. 专业热流体系统仿真平台Flowmaster [J]. CAD/CAM与制造业信息化. 2011(11): 22−27 [5] Flowmaster Group. Flowmaster User Guide[M]. 2007.