﻿ 基于电子平台修正的舰载雷达标校数据分析研究
 舰船科学技术  2022, Vol. 44 Issue (24): 132-136    DOI: 10.3404/j.issn.1672-7649.2022.24.027 PDF

Research on analysis of the shipborne-radar calibration data based on electronic platform modification
WANG De-liang, ZHAO Liang-ping, CHEN Fei
Nanjing Research Institute of Electronics Technology, Nanjing 210039, China
Abstract: The shipborne digital phased array radar needs to carry out static calibration in dock and dynamic calibration in sea trial before delivery and installation, and the data evaluation is an important work. It introduces the implementation scheme of calibration project, establishes the electronic platform correction model based on direction vector for radar measurement target, analyzes the influence of array attitude and ship attitude data on radar angle measurement; analyzes the abnormal data of the calibration error samples according to the combination with requirements of radar angles measurement index and differences of the error transmission of attitude parameters under different scanning angles. Simulation and practical test application show that the method is helpful for analysis of calibration data and convergence of platform parameter binding error, and has a guiding significance for radar production engineer.
Key words: calibration     the data analysis     platform fixed     the shipborne phased array radar
0 引　言

1 标校方法介绍

 图 1 标校方案简示图 Fig. 1 Schematic diagram of calibration scheme

 图 2 标校工程实现简要流程 Fig. 2 Chart of calibration implementation
2 电子平台修正方法及误差分析 2.1 修正方法

 图 3 平台修正简易模型 Fig. 3 Model of platform modification

 \begin{aligned}[b] {\vec C_i}(A{z_i},E{l_i}) = &(\cos (E{l_i})\cos (A{z_i}), -\\ & \cos (E{l_i})\sin (A{z_i}),\sin (E{l_i}))^ \wedge {\rm{T}} 。\end{aligned} (1)

 ${{\vec C}_0}(A{z_0}',E{l_0}) = {M_1}{{\vec C}_1}(A{z_1},E{l_1})，$ (2)
 ${{\vec C}_1}(A{z_1}',E{l_1}) = {M_2}{{\vec C}_2}(A{z_2},E{l_2})。$ (3)

 $A{z_0} = A{z_0}' + \alpha 。$ (4)

 $A{z_1} = A{z_1}' + (\beta + \Delta \beta )。$ (5)

${{\boldsymbol{M}}_1}$ ${{\boldsymbol{M}}_2}$ 为变换矩阵，表达式如下：

 ${{\boldsymbol{M}}_1} = \left[ \begin{gathered} \cos (R){\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} 0{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} - \sin (R) \\ {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} 0{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} 1{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} 0 \\ \sin (R){\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} 0{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \cos (R) \\ \end{gathered} \right] \cdot \left[ \begin{gathered} 1{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} 0{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} 0{\kern 1pt} {\kern 1pt} \\ 0{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \cos (P){\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \sin (P) \\ 0{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} - \sin (P){\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \cos (P) \\ \end{gathered} \right] ，$
 $\begin{split} {{\boldsymbol{M}}_2} =& \left[ {\begin{array}{*{20}{c}} {\cos (T + \Delta T)} & 0 & { - \sin (T + \Delta T)}\\ 0 & 1 & 0\\ {\sin (T + \Delta T)} & 0 & {\cos (T + \Delta T)} \end{array}} \right] \times \\ &\left[ {\begin{array}{*{20}{c}} 1 & 0 & 0\\ 0 & {\cos (\sigma + \Delta \sigma )} & {\sin (\sigma + \Delta \sigma )}\\ 0 & { - \sin (\sigma + \Delta \sigma )} & {\cos (\sigma + \Delta \sigma )} \end{array}} \right]。\end{split}$

 $\begin{split} & Az = {\tan ^{ - 1}}\left(\frac{{y' - \Delta y}}{{x' - \Delta x}}\right)，\\ & El = {\tan ^{ - 1}}\left(\frac{{z' + \Delta z}}{{\sqrt {{{(x' - \Delta x)}^2} + {{(y' - \Delta y)}^2}} }}\right)。\end{split}$ (6)

2.2 误差分析

1）舰姿态误差传递

 图 4 横摇误差 $\Delta R$ 对测角的影响 Fig. 4 Influence of $\Delta R$ on angle measurement

2）阵面姿态误差传递

 图 5 纵摇误差 $\Delta P$ 对测角的影响 Fig. 5 Influence of $\Delta P$ on angle measurement

 图 6 航向角误差 $\Delta \alpha$ 对测角的影响 Fig. 6 Influence of $\Delta \alpha$ on angle measurement

 图 7 不水平度误差 $\Delta H o$ 对测角的影响 Fig. 7 Influence of $\Delta H o$ on angle measurement

 图 8 倾角误差 $\Delta T$ 对测角的影响 Fig. 8 Influence of $\Delta T$ on angle measurement

 图 9 法向角误差对测角的影响 Fig. 9 Influence of on angle measurement
3 试验应用

 图 10 试验数据处理 Fig. 10 Processing of test data
4 结　语

1）平台参数误差传递在静态单点标校下表征不明显，而在动态标校大角度对比下表征明显；

2）舰船航向角误差和阵面法向角误差仅影响雷达方位角测量精度，不影响雷达仰角测量精度；方位角测量误差不受扫描角调制，随航向角误差和阵面法向角误差趋于线性增加；

3）舰船横摇、纵摇误差和阵面不水平度、倾角误差对雷达仰角测量精度的影响度更强，大角度误差差异大；对雷达方位测量精度的影响度小，大角度误差差异小；

4）舰船横摇、纵摇误差影响下，雷达仰角测量误差单调变化；阵面不水平度、倾角误差影响下，雷达仰角测量误差在阵面法向两边趋于对称。

 [1] 段静玄, 郑剑飞, 赵复政, 等. 基于全球定位系统的舰载三坐标雷达动态标校方法[J]. 中国舰船研究, 2012, 39(4): 100-104. DUAN J X, ZHENG J F, ZHAO F Z, et al. A GPS based dynamic calibration method for shipborne three-dimensional radar[J]. Chinese Journal of Ship Research, 2012, 39(4): 100-104. DOI:10.3969/j.issn.1673-3185.2012.04.017 [2] 季勤超, 姚申茂, 杨利斌, 等. 基于无人机和差分GPS的舰载雷达动态标校方法[J]. 计算机与数字工程, 2018, 348(10): 1984-1988. JI Q C, YAO S M, YANG L B, et al. Dynamic calibration method of shipboard radar based on unmanned aerial vehicle and differential GPS[J]. Computer& Digital Engineering, 2018, 348(10): 1984-1988. DOI:10.3969/j.issn.1672-9722.2018.10.010 [3] 方棉佳, 吕涛. 单脉冲和差波束测角的精度研究[J]. 雷达科学与技术, 2013, 11(6): 645-649. DOI:10.3969/j.issn.1672-2337.2013.06.015 [4] 王晓楠. 基于相控阵雷达波束扫描的目标测角误差分析[J]. 舰船电子对抗, 2018, 279(3): 74-78. [5] 吕向阳. 舰载雷达天线电子稳定方程在三轴稳定转台雷达上的应用分析[J]. 雷达与对抗, 2017, 193(4): 54-57. LV X Y. Application of electronic stabilization equation of ship-borne radar antenna in radars with three-axis stabilizing rotary platform[J]. Radar& ECM, 2017, 193(4): 54-57. [6] 雷杰, 严康, 郭锐. 舰载雷达三轴转台稳定方程推导[J]. 现代雷达, 2017, 320(7): 66-69. [7] 曹正才. 舰载雷达常用稳定方式坐标变换[J]. 雷达与对抗, 2010, 162(1): 47-52. [8] 陈欣. 平台罗经误差对舰载雷达测角精度的影响分析[J]. 江苏科技信息, 2017, 521(8): 52-54. DOI:10.3969/j.issn.1004-7530.2017.08.021 [9] 陶军, 唐晓雷, 黄晓辉. 阵面安装误差对相控阵雷达测角精度的影响[J]. 数据采集与处理, 2017, 146(6): 1179-1186. TAO J, TANG X L, HUANG X H. Angle measurement accuracy of phased array radar with array installation errors[J]. Journal of Data Acquisition and Processing, 2017, 146(6): 1179-1186. [10] 李洪梅, 潘江怀, 何佳洲, 罗双喜. 舰载雷达探测误差传递与灵敏度分析[J]. 数据采集与处理, 2012, 114(4): 474-479. LI H M, PAN J H, HE J Z, et al. Error transfer and sensitivity analysis of ship-borne radar detecting[J]. Journal of Data Acquisition and Processing, 2012, 114(4): 474-479. DOI:10.3969/j.issn.1004-9037.2012.04.013 [11] 金东勇, 陈俊霞, 李艳华. 平面相控阵天线波束控制技术[J]. 太赫兹科学与电子信息学报, 2021, 19(1): 75-79. JIN D Y, CHEN J X, LI Y H. Beam-steering of planar phased array antenna[J]. Journal of Teraherta Science and Electronic Information Technology, 2021, 19(1): 75-79. DOI:10.11805/TKYDA2019433 [12] 梅启元, 沈文军. 一种大型相控阵雷达阵面的安装调整方法[J]. 电子机械工程, 2014, 172(6): 36-39. MEI Q Y, SHEN W J. An installing and adjusting method for antenna array of large phased array radar[J]. Electro-Mechanical Engineering, 2014, 172(6): 36-39. DOI:10.3969/j.issn.1008-5300.2014.06.011