﻿ 动力定位船的推进器功率再分配控制策略研究
 舰船科学技术  2022, Vol. 44 Issue (24): 128-131    DOI: 10.3404/j.issn.1672-7649.2022.24.026 PDF

1. 河南科技大学，河南 洛阳 471000;
2. 许昌职业技术学院，河南 许昌 461000

Research on power redistribution control strategy of thrusters for dynamic positioning ship
HU Jian-zhi1,2
1. Henan University of Science and Technology, Luoyang 471000, China;
2. Xuchang Vocational Technical College, Xuchang 461000, China
Abstract: The power management system PMS of ship power station is a new control system. Based on the characteristics of power station and ship power network system, it can adjust the power characteristics of ship power load by controlling rectifiers, inverters, etc. The object of this paper is a kind of dynamic positioning ship driven by electric thrusters. By establishing the kinematic model of the dynamic positioning process and combining PMS control system, the optimal control of the power redistribution of the thrusters of the dynamic positioning ship is realized, which can save energy in the dynamic positioning process and improve the efficiency of dynamic positioning.
Key words: dynamic positioning ship     PMS system     power distribution     optimize control
0 引　言

1 船舶电站功率管理系统研究现状

 图 1 典型船舶电站与功率系统原理图 Fig. 1 Schematic diagram of typical ship power station and power system

1）电源

2）功率网

3）输配电装置

4）功率负荷

2 船舶动力定位和推力分配的动力学模型

 图 2 船舶海上的六自由度运动模型 Fig. 2 Six degree of freedom motion model of ship at sea

 $\vec M = \vec {\boldsymbol{J}}\left( M \right)\vec V \text{。}$

 $\vec {\boldsymbol{J}}\left( M \right) = \left[ {\begin{array}{*{20}{c}} { - \cos \alpha }&{\cos \alpha }&0 \\ 1&{\sin \alpha }&0 \\ { - \sin \alpha }&0&1 \end{array}} \right] \text{，}$

 $\vec M{\vec V } + \vec F\left( {{{\vec V}} - {{\vec V}}_c} \right) = {\vec \tau _0} \text{，}$

 ${\vec \tau _0} = {\vec \tau _a} + {\vec \tau _b} \text{，}$

$\vec {\boldsymbol{M}}$ 为惯性矩阵， $\vec {\boldsymbol{F}}$ 为运动模型的系数矩阵，分别为：

 $\begin{split} & \vec {\boldsymbol{M}} = \left[ {\begin{array}{*{20}{c}} {m - {X_r}}&0&0 \\ 0&{m - {Y_r}}&{{Y_r}} \\ 0&1&{{I_z} - {N_r}} \end{array}} \right]，\\ & \vec {\boldsymbol{F}} = \left[ {\begin{array}{*{20}{c}} { - {X_r}}&0&0 \\ 0&{{Y_r}}&{ - {Y_r}} \\ 0&1&{ - {N_r}} \end{array}} \right] \text{。} \end{split}$

 $\left\{ {\begin{array}{*{20}{l}} {{F_x} - \displaystyle\sum\limits_{i = 1}^n {{F_i}} \cos {\alpha _i} = 0}，\\ {{F_y} -\displaystyle \sum\limits_{i = 1}^n {{F_i}} \sin {\alpha _i} = 0}，\\ {N - \displaystyle\sum\limits_{i = 1}^n {{F_i}} {l_i}\cos {\alpha _i} + \sum\limits_{i = 1}^n {{F_i}} {l_j}\sin {\alpha _i} = 0} 。\end{array}} \right.$

3 动力定位船舶推进器功率再分配控制策略 3.1 动力定位船舶的布局和推进器效率计算

 图 3 船舶的动力定位推进器布局 Fig. 3 Dynamic positioning thruster layout of ships

 $\begin{gathered} t = T/{T_0} = 1 - {0.75^{(x/D)\frac{{^2}}{3}}} \text{，} \\ {t_h} = t + (1 - t)\frac{{{\phi ^3}}}{{130/{t^3} + {\phi ^3}}} 。\\ \end{gathered}$

 图 4 动力定位推进器的功率曲线 Fig. 4 Power curve of dynamic positioning thruster

1）航行工况，船舶全速且满负载航行。

2）压载工况，进出港时压载航行，非满功率状态。

3）靠泊和装卸货工况，此时需要起锚和系缆，并进行动力定位。

4）深海作业工况，作业时利用动力定位推进器保持船舶的动态定位。

5）应急工况，如船舶失火等临时故障。

3.2 动力定位船舶的推进器功率控制策略

 图 5 动力定位船舶的推进器功率控制策略 Fig. 5 Propulsor power control strategy for dp ships

 图 6 船舶动力定位推进器功率控制仿真曲线 Fig. 6 Power control simulation curve of ship dynamic positioning thruster
4 结　语

 [1] 赖垚, 张吉海, 陈波, 等. DP动力定位系统在海上风电施工中的应用[J]. 机电工程技术, 2022, 51(10): 40-42+52. LAI Yao, ZHANG Ji-hai, CHEN Bo, et al. Application of DP dynamic positioning system in offshore wind power construction[J]. Electromechanical Engineering Technology, 2022, 51(10): 40-42+52. [2] 张晶晶. 半潜式钻井平台在海洋内波中的动力定位能力分析[J]. 中国造船, 2022, 63(5): 101-113. ZHANG Jing-jing. Dynamic positioning capability analysis of semi submersible drilling platform in ocean internal waves[J]. China Shipbuilding, 2022, 63(5): 101-113. [3] 郑智. DP-3动力定位系统实船电气设计分析[J]. 武汉船舶职业技术学院学报, 2022, 21(3): 126-130. ZHENG Zhi. Analysis on the Electrical Design of DP-3 Dynamic Positioning System for Real Ships[J]. Journal of Wuhan Shipbuilding Vocational and Technical College, 2022, 21(3): 126-130. DOI:10.3969/j.issn.1671-8100.2022.03.030