﻿ 机械式纵倾平衡系统在大型无人潜航器应用研究
 舰船科学技术  2022, Vol. 44 Issue (24): 45-49    DOI: 10.3404/j.issn.1672-7649.2022.24.010 PDF

Research of application of mechanical trim balance system in large unmanned underwater vehicle
WANG Bin, DUAN Yong, LI Ze-cheng
Key Laboratory of Ship Vibration and Noise, China Ship Scientific Research Center, Wuxi 214082, China
Abstract: The trim balance system can adjust the posture of large unmanned underwater vehicle (UUV for short), so that the UUV can sail with zero trim or specified trim. According to the research status of the trim balance system and combined with the specific application scenarios, a mechanical trim balance system was designed. The composition and working principle of the system were described, and the working mode of this mechanical trim balance system was analyzed under the state of water surface, the static state of underwater suspension, the state of non-trim constant speed linear fixed depth motion and the state of inter travel equilibrium. It has been verified by experiments that the designed mechanical trim balance system can meet the application requirements of large unmanned underwater vehicles.
Key words: unmanned underwater vehicle     trim balance system     mass block     working state
0 引　言

1 系统组成

 图 1 纵倾平衡系统结构示意图 Fig. 1 Structure diagram of trim balance system

 图 2 纵倾平衡系统安装示意图 Fig. 2 Installation diagram of trim balance system
2 工作原理

 图 3 纵倾平衡调节闭环控制操作流程图 Fig. 3 Operation flow chart of closed loop control of trim balance adjustment

3 系统工作方式研究

3.1 水面状态

 ${M_{RL}} = \Delta \uparrow g \cdot \overline {G{M_L}} \cdot \sin \theta。$ (1)

 $\overline {G{M_L}}=\overline {KB}+\overline {B{M_L}}-\overline {KG} 。$ (2)

 $l = \frac{{{M_{RL}}}}{m} = \frac{{\Delta \uparrow \overline {G{M_L}} \cdot \sin \theta }}{m}。$ (3)

3.2 水下悬浮静止状态

 ${M_{RL}} \downarrow = \Delta \downarrow g({z_B} \downarrow - {z_G} \downarrow )\sin \theta 。$ (4)

 $l = \frac{{{M_{RL}} \downarrow }}{m} = \frac{{\Delta \uparrow ({z_B}_0 - {z_G} \uparrow )\sin\theta }}{m} = \frac{{\Delta \uparrow a \sin\theta }}{m}。$ (5)

 图 4 滑移距离与质量块质量关系图 Fig. 4 Relationship between slip distance and mass of mass block

3.3 无纵倾等速直线定深运动状态

 $\left\{ \begin{gathered} Z_0' + Z_{{\delta _s}}'{\delta _s} + Z_{{\delta _b}}'{\delta _b} + P' = 0 ，\\ M_0' + M_{{\delta _s}}'{\delta _s} + M_{{\delta _b}}'{\delta _b} + M_P' + {a_T}z_T' = 0，\\ \end{gathered} \right.$ (6)
 $\left\{ \begin{gathered} M_P' = - {P'}x_P' ，\\ {P'} = \frac{P}{{\frac{1}{2}\rho {L^2}{U^2}}},{a_T} = \frac{{{X_T}}}{{\frac{1}{2}\rho {L^2}{U^2}}},z_T' = \frac{{{z_T}}}{L} 。\\ \end{gathered} \right.$ (7)

 $\left\{ \begin{gathered} Z_0' + {P'} = 0 ，\\ M_0' + M_P' + {\alpha _T}z_T' = 0 。\\ \end{gathered} \right.$ (8)

 $\left\{ \begin{gathered} P = - \frac{1}{2}\rho {L^2}{U^2}Z_0' ，\\ {M_P} = - \frac{1}{2}\rho {L^3}{U^2}(M_0' + {\alpha _T}z_T')。\\ \end{gathered} \right.$ (9)

 $\Delta {P_1} = P，$ (10)

$\Delta {P_1} > 0$ 时，向浮力调整水舱注水，当 $\Delta {P_1} < 0$ 时，由浮力调整水舱向舷外排水。

 $l = \frac{{{M_p} + \Delta {P_1} \cdot {x_v}}}{m} 。$ (11)

l>0，则质量块向潜航器尾部移动，若l<0，则质量块向潜航器首部移动。

 $\left\{ \begin{gathered} {\delta _s} = \frac{{ - (M_0' + {\alpha _T}z_T' + M_P')Z_{{\delta _b}}' + (Z_0' + {P'})M_{{\delta _b}}'}}{{M_{{\delta _s}}'Z_{{\delta _b}}' - M_{{\delta _b}}'Z_{{\delta _s}}'}} ，\\ {\delta _b} = \frac{{ - (Z_0' + {P'})M_{{\delta _b}}' + (M_0' + {\alpha _T}z_T' + M_P')Z_{{\delta _b}}'}}{{M_{{\delta _s}}'Z_{{\delta _b}}' - M_{{\delta _b}}'Z_{{\delta _s}}'}}。\\ \end{gathered} \right.$ (12)

 $\left\{ \begin{gathered} {P'} = \dfrac{{\Delta {P_2}}}{{\dfrac{1}{2}\rho {L^2}{U^2}}}，\\ M_P' = \dfrac{{l \cdot m + \Delta {P_2} \cdot {x_v}}}{{\dfrac{1}{2}\rho {L^3}{U^2}}}。\\ \end{gathered} \right.$ (13)
3.4 行进间均衡

 $\left\{ \begin{gathered} P = - \frac{1}{2}\rho {L^2}{U^2}(Z_0' + Z_{{\delta _b}}'{\delta _b} + Z_{{\delta _s}}'{\delta _s} + Z_w'\theta )，\\ {M_P} = - \frac{1}{2}\rho {L^2}{U^3}[\Delta P_1' \cdot x_v' + M_0' + M_{{\delta _b}}'{\delta _b} + \\ \qquad\;\;\; M_{{\delta _s}}'{\delta _s} + (M_w' + M_\theta')\theta ]。\\ \end{gathered} \right.$ (14)

 $\Delta P = P = - \frac{1}{2}\rho {L^2}{V^2}(Z_0' + Z_{{\delta _b}}'{\delta _b} + Z_{{\delta _s}}'{\delta _s} + Z_w'\theta )，$ (15)

$\Delta P > 0$ 时，向浮力调整水舱注水，当 $\Delta P < 0$ 时，由浮力调整水舱向舷外排水。

 $\begin{split} l = &\frac{{{M_P}}}{m} = - \frac{1}{{2m}}\rho {L^2}{V^2}[\Delta P_1 \cdot x_v' + M_0' + M_{{\delta _b}}'{\delta _b} +\\ &M_{{\delta _s}}'{\delta _s} + (M_w' + M_\theta')\theta ] 。\end{split}$ (16)

l>0，质量块向尾部移动，若l<0，质量块向首部移动。

4 试验验证

5 结　语

1）机械式纵倾平衡系统采用伺服电机驱动滚珠丝杠带动质量块沿潜航器纵向滑动，通过改变潜航器重心来达到实现纵倾平衡的目的，并且质量块与耐压壳共形设计，使该系统具有占用空间小、操作简便以及运行精度高等优点。

2）潜航器在水面状态发生纵倾时，纵倾平衡系统不起作用；在水下悬浮静止状态发生纵倾时，可以在此状态下进行质量块滑移距离和质量块质量的设计。

3）在无纵倾等速直线定深运动过程中，可单独使用机械式纵倾平衡系统配合浮力调整系统，或与操舵并用的方法调节潜航器平衡，调节过程可定量计算得出。

4）在行进间均衡时，由首、尾升降舵舵角及纵倾角可计算出浮力调整水舱注排水量以及质量块移动的距离。

 [1] 王强. 大型无人潜航器的发展与军事用途[J]. 数字海洋与水下攻防, 2019, 2(4): 33−39. [2] 钱东, 赵江, 杨芸. 军用UUV发展方向与趋势(上)——美军用无人系统发展规划分析解读[J]. 水下无人系统学报, 2017, 25(2): 1-30. [3] 周克秋. 作业型水下机器人姿态平衡研究[D]. 镇江: 江苏科技大学, 2019. [4] 苏浩. 微小型水下机器人模块化技术研究[D]. 哈尔滨: 哈尔滨工程大学, 2011. [5] 孙伟成. 水下滑翔机运动控制系统研制[D]. 青岛: 中国海洋大学, 2014. [6] 魏军, 陈志诚, 曾斌. 潜艇自航模控制系统设计[J]. 火力与指挥控制, 2014, 39(11): 171-174. DOI:10.3969/j.issn.1002-0640.2014.11.042 [7] 苏玉民, 庞永杰. 潜艇原理[M]. 哈尔滨: 哈尔滨工程大学出版社, 2013. [8] 施生达. 潜艇操纵性[M]. 北京: 国防工业出版社, 1995. [9] 申冬慧, 郝燕玲, 王诚. 潜艇潜浮过程中均衡操纵的建模与仿真[J]. 计算机仿真, 2005(4): 4-6,15. DOI:10.3969/j.issn.1006-9348.2005.04.002