﻿ 船舶检测过程中爬壁机器人技术的应用
 舰船科学技术  2022, Vol. 44 Issue (23): 177-180    DOI: 10.3404/j.issn.1672-7649.2022.23.037 PDF

Application of wall-climbing robot technology in ship inspection process
LI kun
College of Intelligent Manufacturing, Anhui Wenda University of Information Engineering, Hefei 231201, China
Abstract: In recent years, the development of robot technology is changing with each passing day. Robots play an increasingly important role in both the industrial field and the household intelligent appliances, and the shipbuilding industry is no exception. Due to the large structure size of large ships, the outer hull adopts welding technology, and the defect detection of hull welds is an important detection process, while the traditional manual detection requires climbing operations, and the efficiency is very low, so it is not often necessary to use wall climbing robots and automatic detection technology. This paper first introduces the structure and mechanical principle of the magnetic wall climbing robot, and then develops the remote control system of the wall climbing robot for ships, and introduces in detail the ship quality inspection tools of the wall climbing robot, which is helpful to improve the quality and efficiency of the existing ship inspection process.
Key words: wall climbing robot     remote control     quality testing
0 引　言

1 爬壁机器人结构设计

 图 1 典型履带式磁吸附爬壁机器人示意图 Fig. 1 Schematic diagram of typical crawler type magnetic adsorption wall climbing robot

1）负载能力

2）结构尺寸

3）移动速度

2 船舶检测过程的爬壁机器人技术应用 2.1 爬壁机器人的力学特性分析

 图 2 爬壁机器人的力学模型 Fig. 2 Mechanical model of wall climbing robot

 $\begin{gathered} {G_y} = G\sin \beta \text{，} \\ {G_x} = G\cos \beta \text{。} \\ \end{gathered}$

 ${F_f} \geqslant \left( {{G_x} + {G_y}} \right)/2 \text{，}$
 ${F_f} = {\mu _0} \cdot N = {\mu _0}\sum\limits_{i = 1}^n {{N_i}} \text{。}$

 ${F_e} \geqslant \frac{{{G_x} + {G_y}}}{{2{r_0}n}} + \frac{{{F_d} + {N_t} + {G_y}}}{{2n}} + \frac{{{N_e} - {F_e}}}{n} \text{。}$

 $\sum\limits_{}^{} {{M_e} = {M_1} + {M_2} + {M_3} = 0} \text{。}$

 $\begin{gathered} {M_1} = \left( {{F_{{\text{e1 }}}} - {N_1}} \right)l \text{，} \\ {M_2} = \frac{{(G \cdot \sin \alpha )}}{2}{l_1} \text{，} \\ {M_3} = \frac{{G \cdot \cos \alpha }}{2}{l_2} \text{。} \\ \end{gathered}$

 $\begin{gathered} \left( {{F_{{\text{e1 }}}} - {N_1}} \right)l - \frac{{(G \cdot \sin \alpha )}}{2} - \frac{{G \cdot \cos \alpha }}{2} = 0 \text{，} \\ {F_{e1}} = \frac{{(G \cdot \sin \alpha ){l_1}}}{{2l}} - \frac{{G \cdot \cos \alpha }}{{2l}} + {N_1} \text{。} \\ \end{gathered}$
2.2 船舶检测过程爬壁机器人控制系统设计

 图 3 船舶爬壁机器人的控制原理图 Fig. 3 Control schematic diagram of ship wall climbing robot

1）操作方便、可靠性高。由于爬壁机器人处于船体壁面高空作业，控制器必须具有较高的灵活性和可靠性。

2）可实时调整爬壁机器人的移动速度，准确调整机器人的运动方向，保证工作效率。

3）无损检测和探伤等功能模块能够实现单独控制，并将检测数据通过无线信号实时传输到地面控制中心，无线遥控距离需能够大于200 m。

2.3 船舶检测过程的爬壁机器人硬件设计

1）驱动模块

2）检测装置

 图 4 爬壁机器人超声波探伤模块的原理图 Fig. 4 Schematic diagram of ultrasonic flaw detection module of wall climbing robot

3）检测模块控制单元

 图 5 超声波检测模块的单片机控制器接线图 Fig. 5 Wiring diagram of microcontroller controller of ultrasonic detection module
3 船舶检测过程的爬壁机器人性能测试

 ${F_f} \geqslant \frac{{{M_Q}}}{R} \text{，}$

 ${\mu _0} \geqslant \frac{{2{M_Q} + GR\cos \beta }}{{\left( {2n{F_f} - {F_e} - {N_e} - G\sin \beta } \right)R}} \text{，}$

 $M \geqslant \frac{{G \cdot R\cos \beta }}{2} + \frac{{{\mu _0}R\left( {2n{F_e} - {F_d} - {N_t}} \right)}}{n} \cdot \sum\limits_{i = 1}^n {{I_i}} \text{，}$

 $\mu \leqslant \frac{{nB\left( {2M - 2{M_Q} - GR\cos \beta } \right)}}{{2R\left( {2n{F_e} - {N_e} - G\sin \beta } \right)}} 。$

 图 6 机器人履带与壁面的静摩擦系数曲线 Fig. 6 Static friction coefficient curve between robot track and wall
4 结　语

 [1] 左浩. 基于Netvlad神经网络的变磁力吸附爬壁机器人控制系统设计[J/OL]. 计算机测量与控制: 1–7[2022-12-04]. ZUO Hao. Design of control system for variable magnetic adsorption wall climbing robot based on Netvlad neural network [J/OL]. Computer Measurement and Control: 1–7 [2022-12-04]. [2] 韩力春, 王黎明, 闫晓玲. 船舶爬壁机器人电磁吸附设计分析[J]. 船海工程, 2022, 15(5): 102-107+112. HAN Li-chun, WANG Li-ming, YAN Xiao-ling. Design and analysis of electromagnetic adsorption for ship wall climbing robot[J]. Ship Marine Engineering, 2022, 15(5): 102-107+112. [3] 杨雪健. 金属壁面爬壁机器人力学分析及性能试验[J]. 制造业自动化, 2022, 44(9): 36-39. YANG Xue-jian. Mechanical Analysis and Performance Test of Metal Wall Climbing Robot[J]. Manufacturing Automation, 2022, 44(9): 36-39. DOI:10.3969/j.issn.1009-0134.2022.09.008 [4] 王佳烽. 储罐壁面爬壁机器人吸附结构设计与优化[J]. 自动化与仪表, 2022, 37(9): 36-41+56. WANG Jia-feng. Design and optimization of adsorption structure of wall climbing robot on tank wall[J]. Automation and Instrumentation, 2022, 37(9): 36-41+56. DOI:10.19557/j.cnki.1001-9944.2022.09.009