﻿ 基于差分进化算法的船舶电网系统状态评估研究
 舰船科学技术  2022, Vol. 44 Issue (23): 113-116    DOI: 10.3404/j.issn.1672-7649.2022.23.022 PDF

Study on state evaluation of ship power system based on differential evolution algorithm
MA Li-sheng
Jiangsu Maritime Institute, Nanjing 211106, China
Abstract: The state of ship power grid system has a direct impact on the ship's safe navigation. Therefore, the evaluation method of ship power grid system state based on evolutionary difference algorithm is studied to ensure the ship's safe navigation. The initial evaluation index system of ship power grid system state is constructed by literature method and expert consultation method, and the index system used to evaluate the ship power grid system state is constructed by using the evolutionary difference algorithm to screen the index in the initial evaluation index system. The fuzzy comprehensive evaluation method is adopted to determine the grade of the evaluation results, calculate the weight value of the evaluation index, construct the comprehensive evaluation matrix, and achieve the fuzzy comprehensive evaluation of the ship power grid system status through the evaluation matrix and the weight value to obtain the evaluation results. The test results show that the overall Cronbach evaluation index system constructed by this method′s α coefficient value is above 0.85, which is significantly higher than the standard value, and the evaluation results are consistent with the current state of the ship power grid system, indicating the accuracy of the evaluation results.
Key words: differential evolution algorithm     warship     power grid system     condition assessment     index system     fuzzy comprehensive evaluation
0 引　言

1 船舶电网系统状态评估方法 1.1 基于差分进化算法的评估指标选取

 ${\boldsymbol{X}} = \left[ \begin{array}{*{20}{c}} {x_{11}}, & {x_{12}}, & \cdots , & {x_{1i}} \\ {x_{21}}, & {x_{22}}, & \cdots , & {x_{2i}} \\ { \vdots } & { \vdots } & { \cdots} & \vdots \\ {x_{m1}}, & {x_{m2}}, & \cdots , & {x_{mi}} \end{array} \right]。$ (1)

${\boldsymbol{W}}' = \left[ {{{w'}_1},{{w'}_2}, \cdots ,{{w'}_i}} \right]$ ${G_m}$ 分别表示各船舶电网系统状态评估指标权重和不同评估指标数据的得分，由此能够得到：

 $G = {\left( {X \times W'} \right)^{\rm{T}}}。$ (2)

 ${\hat W^ * } = \arg {\max _W}\left( {{var} \left\{ G \right\}} \right)，$ (3)

 ${D_i} = {W'_i} + S \times {W'_j} - S \times W'，$ (4)

 图 1 船舶电网系统状态评估指标体系 Fig. 1 State evaluation index system of ship power grid system

1.2 模糊综合评估

1）确定被评估的船舶电网系统；

2）构建评估指标集 $X{\text{ = }}\left[ {{x_1},{x_2}, \cdots ,{x_i}} \right]$

3）构建评估结果的评价集 $P$

4）确定权重集。设定 ${x_1},{x_2}, \cdots ,{x_i}$ 的权重分别为 ${w_1},{w_2}, \cdots ,{w_i}$ ，同时符合式(5)标准：

 $\sum\limits_{i = 1}^i {{W_i}} = 1。$ (5)

5）以 $R = {\left( {{r_{ij}}} \right)_{h \times m}}$ 表示综合评估矩阵，其能够描述 $X$ $P$ 的模糊相关性，其中 ${r_{ij}}$ 表示指标在评估等级 ${p_j}$ 上的隶属度， $h$ $m$ 分别表示评估等级数量和评估指标数量。以令结果归一化为目的，设 ${r_{ij}}$ 符合 $\displaystyle\sum\limits_{j = 1}^m {{r_{ij}}} = 1$

6）利用式(6)实施船舶电网系统状态模糊综合评估运算：

 $\left\{ \begin{gathered} B = W \times R = \left( {{b_1},{b_2}, \cdots ,{b_h}} \right) ，\\ {b_j} = \mathop \vee \limits_{i = 1}^m \left( {{w_i} \wedge {r_{ij}}} \right) 。\end{gathered} \right.$ (6)

7）利用式(7)计算船舶电网系统状态评估结果：

 $\left\{ \begin{gathered} {P_r} = \sum\limits_{j = 1}^h {{\beta _j}{p_j}} ，\\ {\beta _j} = \frac{{{b_j}}}{{\displaystyle\sum\limits_{j = 1}^h {{b_j}} }} 。\end{gathered} \right.$ (7)
2 测试结果与分析

2.1 评价指标信度检验结果

2.2 评估过程与结果

 图 2 权重计算结果 Fig. 2 Weight calculation results

 $R = \left\{ \begin{gathered} 0.07,0.13,0.37,0.43 \\ 0.15,0.17,0.33,0.35 \\ 0.10,0.18,0.32,0.40 \\ 0.08,0.21,0.36,0.35 \\ 0.13,0.20,0.27,0.40 \\ 0.09,0.16,0.34,0.41 \\ \end{gathered} \right\}。$ (8)

 $B = W \times R = \left( {0.13,0.17,0.29,0.31} \right) 。$ (9)

3 结　语

 [1] 王守相, 孟子涵. 舰船综合电力系统分析技术研究现状与展望[J]. 中国舰船研究, 2019, 14(2): 107-117. WANG Shou-xiang, MENG Zi-han. Current status and prospects of analysis technologies of shipboard integrated power system[J]. Chinese Journal of Ship Research, 2019, 14(2): 107-117. DOI:10.19693/j.issn.1673-3185.01313 [2] 吴优, 付立军, 马凡, 等. 基于HLA的舰船综合电力系统信息物理混合仿真[J]. 电网技术, 2019, 43(7): 2422-2429. WU You, FU Lijun, MA Fan, et al. Cyber-physical co-simulation of vessel integrated power system based on HLA[J]. Power System Technology, 2019, 43(7): 2422-2429. [3] 邢晓敏, 徐海瑞, 廖孟柯, 等. 基于云模型和D-S证据理论的配电终端健康状态综合评估方法[J]. 电力系统保护与控制, 2021, 49(13): 72-81. XING Xiao-min, XU Hai-rui, LIAO Meng-ke, et al. Comprehensive evaluation method of distribution terminal units health status based on a cloud model and D-S evidence theory[J]. Power System Protection and Control, 2021, 49(13): 72-81. DOI:10.19783/j.cnki.pspc.201121 [4] 詹锦皓, 李维波, 李齐, 等. 基于比例伪时序算法的舰船电力风险评估系统[J]. 中国舰船研究, 2022, 17(1): 176-186. ZHAN Jin-hao, LI Wei-bo, LI Qi, et al. Ship power risk assessment system based on proportional pseudo time-series algorithm[J]. Chinese Journal of Ship Research, 2022, 17(1): 176-186. [5] 毕超超, 范勤勤, 王维莉. 基于策略自适应的多目标差分进化算法及其应用[J]. 计算机应用研究, 2020, 37(7): 2016-2021. BI Chao-chao, FAN Qin-qin, WANG Wei-li. Multi-objective differential evolution algorithm based on self-adaptive strategy and its application[J]. Application Research of Computers, 2020, 37(7): 2016-2021. DOI:10.19734/j.issn.1001-3695.2018.12.0931 [6] 丁斌, 袁博, 郑焕坤, 等. 基于大数据分析的电力信息系统安全状态监测技术研究[J]. 电测与仪表, 2021, 58(11): 59-66. DING Bin, YUAN Bo, ZHENG Huan-kun, et al. Research on security state monitoring technology of power information system based on big data analysis[J]. Electrical Measurement & Instrumentation, 2021, 58(11): 59-66.