﻿ 柴油机活塞热负荷影响规律研究
 舰船科学技术  2022, Vol. 44 Issue (23): 87-91    DOI: 10.3404/j.issn.1672-7649.2022.23.017 PDF

1. 中国船舶集团有限公司第七一一研究所，上海 200090;
2. 船舶与海洋工程动力系统国家工程实验室，上海 201108

Research on effect rules of specific diesel engine′s piston thermal load
RONG Zhi-xiang1,2, SONG Da-wei1,2, REN Lu-ping1,2, ZHU Kui1,2
1. Shanghai Marine Diesel Engine Research Institute, Shanghai 200090, China;
2. National Engineering Laboratory for Marine and Ocean Engineering Power System, Shanghai 201108, China
Abstract: This paper studied the effect of parameter variation of pressure system, fuel system and value train system on a type of specific diesel engine's piston thermal load under high exhaust back pressure conditions. The thermal load model was set up to simulate piston thermal load under different performance parameters, according to the analysis results the influence of performance parameters to piston thermal load was converted to the influence of average gas temperature and average heat transfer coefficient. Finally, the optimal scheme was determined and the correctness was proved by experiment, which provided the basis for diesel engine parameter selection.
Key words: heat load     piston     special diesel engine
0 引　言

1 活塞热负荷计算模型的建立 1.1 活塞相关参数

1.2 有限元模型

 图 1 活塞的三维模型和网格模型 Fig. 1 Three dimensional model and grid model of piston
1.3 边界条件的确定

 ${h_{gm}} = \frac{1}{{720}}\int_0^{720} {{h_g}} {\rm{d}}\varphi，$ (1)
 ${T_{res}} = \dfrac{{{{({h_g}{T_g})}_m}}}{{{h_{gm}}}} = \dfrac{{\dfrac{1}{{720}}\displaystyle\int_0^{720} {{h_g}} {T_g}{\rm{d}}\varphi }}{{\dfrac{1}{{720}}\displaystyle\int_0^{720} {{h_g}} {\rm{d}}\varphi }} 。$ (2)

2 不同性能参数对活塞热负荷的影响及分析

2.1 增压系统参数对活塞热负荷的影响

 图 2 不同喷嘴环面积下瞬时换热系数和瞬时燃气温度随曲轴转角的变化规律 Fig. 2 Variation of instantaneous heat transfer coefficient and instantaneous gas temperature with crankshaft angle under different nozzle ring area

 图 3 平均换热系数及平均燃气温度随喷嘴环截面积的变化规律 Fig. 3 Average heat transfer coefficient and average gas temperature vary with nozzle ring sectional area

2.2 燃油系统参数对活塞热负荷的影响

 图 4 不同喷油提前角下瞬时换热系数和瞬时燃气温度随曲轴转角的变化规律 Fig. 4 Instantaneous heat transfer coefficient and instantaneous gas temperature vary with crankshaft angle at different injection advance angles

 图 5 平均换热系数及平均燃气温度随喷油提前角的变化规律 Fig. 5 Average heat transfer coefficient and average gas temperature vary with injection advance angle

2.3 配气系统参数对活塞热负荷的影响

 图 6 不同进气提前角下瞬时换热系数和瞬时燃气温度随曲轴转角的变化规律 Fig. 6 Instantaneous heat transfer coefficient and instantaneous gas temperature vary with crankshaft angle at different inlet advance angles

 图 7 平均换热系数及平均燃气温度随进气提前角的变化规律 Fig. 7 Average heat transfer coefficient and average gas temperature vary with inlet advance angle

 图 8 不同排气滞后角下瞬时换热系数和瞬时燃气温度随曲轴转角的变化规律 Fig. 8 Instantaneous heat transfer coefficient and instantaneous gas temperature vary with crankshaft angle at different exhaust lag angles

 图 9 平均换热系数及平均燃气温度随排气滞后角的变化规律 Fig. 9 Average heat transfer coefficient and average gas temperature vary with exhaust lag angle

3 活塞热负荷优化控制策略及试验验证 3.1 活塞热负荷优化控制策略

 图 10 热负荷优化方案对应的活塞温度云图 Fig. 10 Piston temperature cloud diagram corresponding to heat load optimization scheme

3.2 活塞热负荷优化方案的试验验证

 图 11 活塞温度场测试结果 Fig. 11 Piston temperature field of test results

4 结　语

1）通过对活塞热负荷影响规律进行分析，将不同性能参数对活塞热负荷的影响转化为柴油机平均燃气温度和平均换热系数对活塞热负荷的影响，确定了特殊环境下柴油机的热负荷优化方案；

2）通过仿真分析确定了选取6#涡轮、喷油提前角−6.854°、进气正时42.6°、排气正时30.4°的优化方案，并通过试验，验证了优化方案的合理性。

 [1] 陈大荣. 船舶内燃机设计[M]. 北京: 国防工业出版社, 1995. [2] 丁建民. 柴油机关键部件热负荷影响因素分析[D]. 济南: 山东大学, 2021. [3] MATSURA Y, NAKAZAWA N, KOBAYASHI Y, Effects of various methods for improving vehicle startability and transient response of turbocharged diesel trucks[C]//International Congress & Exposition, 1992. [4] 王磊, 苏祥文, 徐赵刚. 二冲程低压双燃料发动机配气正时对燃气-空气混合效果的影响[J]. 柴油机, 2021, 43(6): 10-14. [5] 郑宇, 孟凡旺, 张强. 配气正时对增压发动机性能影响综述[J]. 内燃机与配件, 2019(15): 52-55. [6] 刘鹏飞. 大功率特种柴油机改进中关键部件的热负荷分析研究[D]. 北京: 中国舰船研究院, 2015. [7] 李全. 高强化船用柴油机活塞多物理场耦合分析研究与应用[D]. 北京: 中国舰船研究院, 2016. [8] 曹斯琦, 苏铁熊, 王孝. 关于内燃机活塞测温方法的综述[J]. 内燃机, 2015(2): 1-4.