﻿ 叶片间距对船用滤清器技术经济性能的影响
 舰船科学技术  2022, Vol. 44 Issue (23): 49-53    DOI: 10.3404/j.issn.1672-7649.2022.22.010 PDF

1. 常州大学 机械与轨道交通学院，江苏 常州 213164;
2. 江苏省绿色过程装备重点实验室，江苏 常州 213164;
3. 无锡宝宏环保船舶有限公司，江苏 无锡 201203

Effect of blade interval upon comprehensive Technical-economic performance of marine filters
BU Shi1,2, YANG Zhengjun1, FENG Liang3, JIA Yong1, ZHANG Bin3
1. School of Mechanical Engineering and Rail Transit, Changzhou University, Changzhou 213164, China;
2. Jiangsu Key Laboratory of Green Process Equipment, Changzhou 213164, China;
3. Wuxi Baohong Environmental Marine Company, Wuxi 201203, China
Abstract: Numerical simulation is conducted to investigate the two-phase flow in the marine filters using CFD. Effect of blade interval upon pressure drop and separation efficiency is analyzed within inlet flow velocity of 1~7 m/s and droplets′ diameter of 1~50 μm. The results indicated that, the pressure drop increases and efficiency improves with expending interval. The corner vortex and the separation vortex is responsible for pressure loss variation. The inertial effect and the turbulence dispersion in the bend account for the changing efficiency. Technical-economic performance factors are defined, the analysis implied that, the pressure-economic and the efficiency-economic performance factors show non-monotonic variation with interval, the best pressure-economic and the best efficiency-economic performances can be obtained at the interval of 26mm and 30mm, respectively. The comprehensive technical-economical performance factor improves and slows down with expending interval. Higher flow velocity yields more remarkable difference between different interval. The research can provide a guideline for the optimal design of marine filters.
Key words: filter     two-phase flow     pressure drop     separation efficiency     technical-economic performance.
0 引　言

1 数值模拟 1.1 滤清器结构

 图 1 滤清器结构 Fig. 1 Geometry of filter
1.2 流动介质

1.3 计算网格

 图 2 滤清器网格划分示意 Fig. 2 Computational mesh of filter
1.4 数值方法和边界条件

2 结果与分析 2.1 流场分析

 图 3 流线与速度分布 Fig. 3 Distributions of streamlines and velocity

 图 4 压力分布 Fig. 4 Distributions of pressure

 图 5 湍动能分布 Fig. 5 Distributions of turbulent kinetic energy

 图 6 雾滴浓度分布 Fig. 6 Distributions of droplets concentration
2.2 阻力和分离效率特性

 $\begin{split} & Eu = \frac{{\Delta P}}{{\rho U_{{\text{in}}}^2}} \text{，}\\ & \eta = \frac{{{M_{\text{i}}} - {M_{\text{o}}}}}{{{M_{\text{i}}}}} \times 100{\text{%}}。\end{split}$ (1)

 图 7 叶片间距对阻力的影响 Fig. 7 Effect of interval on pressure drop

 图 8 叶片间距对分离效率的影响 Fig. 8 Effect of interval on separation efficiency
2.3 技术经济性能分析

 $F = \frac{\eta }{{Eu}}。$ (2)

 图 9 叶片间距对技术性能的影响 Fig. 9 Effect of interval on technical performance

 图 10 不同叶片间距平均技术性能 Fig. 10 Average technical performances of different intervals

 \begin{aligned} & {E_{Eu}} = \frac{{Eu}}{R} \text{，} \\ & {E_\eta } = \frac{\eta }{R} \text{，} \\ & {E_F} = \frac{F}{R} = \frac{\eta }{{EuR}} 。\end{aligned} (3)

 图 11 叶片间距对阻力经济性能的影响 Fig. 11 Effect of interval on pressure-economic performance

 图 12 不同叶片间距平均阻力经济性能 Fig. 12 Average pressure-economic performances of different intervals

 图 13 叶片间距对效率经济性能影响 Fig. 13 Effect of interval on efficiency-economic performance

 图 14 不同叶片间距平均效率经济性能 Fig. 14 Average efficiency-economic performances of different intervals

 图 15 叶片间距对综合技术经济性能的影响 Fig. 15 Effect of interval on comprehensive technical-economic performances

 图 16 不同叶片间距平均综合技术经济性能 Fig. 16 Average comprehensive technical-economic performances of different intervals
3 结　语

1）阻力随叶片间距扩大而增大。曲折流道中的角涡和分离涡是引起阻力变化的主要原因；分离效率随进口流速增大而提高，随叶片间距扩大而降低并趋缓。叶片迎风面起到拦截雾滴的主要作用。其中，弯头区的惯性效应和湍流扩散是雾滴分离效率变化的主要原因。

2）滤清器技术性能随流速增大而提高并趋缓。流速小于3 m/s时，技术性能随叶片间距缩小而提高；流速大于3 m/s时，技术性能随叶片间距缩小而下降。以平均效果看，较大的叶片间距技术性能较好，但提升幅度有限。

3）滤清器阻力经济性能随叶片间距扩大先提高后降低，26 mm间距具有最佳阻力经济性能。效率经济性能随叶片间距扩大先降低后提高，30 mm间距具有最佳效率经济性能。

4）滤清器综合技术经济性能随叶片间距扩大而提高，流速越大，区别越显著，但提升也存在限度。建议在除雾效率满足要求的前提下，尽量采用较大的叶片间距。

 [1] 翟斌, 卫禹丞, 李梦竹, 等. 船用燃气轮机进气滤清器冲蚀行为研究[J]. 舰船科学技术, 2021, 43(10): 95-101. [2] 栾一刚, 马正伟, 荀振宇, 等. U型单元气液分离器阻力及防浪性能研究[J]. 汽轮机技术, 2010(2): 112-119. [3] 张恩实, 王飞飞. 冷却塔折流板除雾器叶片折角优化数值模拟[J]. 流体机械, 2018, 46(7): 69-75,53. [4] 陈鸿伟, 徐继法, 冯旭鹏, 等. 除雾器整体结构优化[J]. 中国电机工程学报, 2019, 39(17): 5154-5160. [5] 陈鸿伟, 徐继法, 刘拓, 等. 除雾器钩板与壁面夹角对除雾效率的影响[J]. 动力工程学报, 2019, 39(12): 999-1004. [6] 乔宗良, 周建新, 周卫庆, 等. 基于预数值计算的除雾器叶片结构优化设计[J]. 东南大学学报, 2013, 43(1): 76-82. [7] 赵健植, 金保升, 仲兆平, 等. 基于响应曲面法的除雾器叶片效率模拟[J]. 中国电机工程学报, 2007, 2(23): 61-65. [8] 张龙, 王巍, 赵勇. 不同叶片间距惯性汽水分离器阻力特性研究[J]. 汽轮机技术, 2011, 53(4): 283-284,287. [9] SAYED A B, HASSAN R, ROOHOLLAH R. Determination of minimum pressure drop at different plate intervals and air velocity in a wave‐plate mist eliminator[J]. Asia‐Pacific Journal of Chemical Engineering, 2012, 7(4): 590-597. [10] 郝雅洁, 刘嘉宇, 袁竹林, 等. 除雾器内雾滴运动特性与除雾效率[J]. 化工学报, 2014, 65(12): 4669-4677. [11] 袁明慧. 惯性式滤清器除雾特性及阻力特性研究[D]. 哈尔滨: 哈尔滨工程大学, 2015. [12] FANG Can, ZOU Renjie, LUO Guangqian, et al. CFD simulation design and optimization of a novel zigzag wave-plate demister with perforated plate[J]. Applied Thermal Engineering, 2021, 184: 116212. DOI:10.1016/j.applthermaleng.2020.116212 [13] 范桂杰. 基于有限元分析技术的船用轮机滤清器研究[J]. 舰船科学技术, 2018, 40(8A): 184-186.