﻿ 极限载荷下筒状重力锚结构强度数值模拟分析
 舰船科学技术  2022, Vol. 44 Issue (23): 28-32    DOI: 10.3404/j.issn.1672-7649.2022.23.006 PDF

1. 昆明船舶试验设备研究中心，云南 昆明 650051;
2. 武汉第二船舶设计研究所，湖北 武汉 430064

Numerical simulation analysis of the strength of a cylindrical gravity anchor structure under ultimate load
ZHANG La-ming1, LIU Min2
1. Kunming Shipborne Equipment Research and Test Center, Kunming 650051, China;
2. Wuhan Second Ship Design and Research Institute, Wuhan 430064, China
Abstract: In this paper, according to the actual engineering requirements, a gravity anchor that meets specific indexes is designed. According to the two-dimensional design drawing of the gravity anchor, a three-dimensional finite element model is established. By selecting the two most representative working conditions in the working process of the gravity anchor, the finite element analysis software Abaqus is used to analyze its structural strength. The analysis results show that: under the hoisting condition, the stress at the contact part between the lifting lug of the gravity anchor and the pin is the largest; while in the in-situ recovery condition, the stress at the contact part between the support rib and the emergency release device is the largest. According to the analysis results under the two working conditions and engineering experience, the components of the gravity anchor are optimized and improved. Finally, a gravity anchor design scheme that can meet the specific engineering needs and take into account the cost is obtained, which provides analysis and reference for engineering applications.
Key words: gravity anchor     ultimate load     strength analysis     finite element method
0 引　言

1 重力锚结构有限元模型的建立 1.1 几何建模

 图 1 筒状重力锚总体设计方案二维平面图 Fig. 1 Two-dimensional plan of the overall design of the cylindrical gravity anchor

 图 2 重力锚实体模型 Fig. 2 Solid model of gravity anchor
1.2 计算工况及相关边界条件设置

 图 3 2种复杂工况示意图 Fig. 3 Schematic diagram of two complex working conditions

 图 4 工况1下边界条件设置 Fig. 4 Boundary conditions setting under working conditions 1

 图 5 工况2下边界条件设置 Fig. 5 Boundary conditions setting under working conditions 2
1.3 模型网格划分

 图 6 工况1下重力锚有限元模型 Fig. 6 Finite element model of gravity anchor under working conditions 1

 图 7 工况2下重力锚有限元模型 Fig. 7 Finite element model of gravity anchor under working conditions 2
2 重力锚有限元计算结果及评定 2.1 有限元结果

 图 8 重力锚20°起吊工况的Mises应力分布和应力集中部位 Fig. 8 Mises stress distribution under 20° lifting condition of gravity anchor and stress concentration part

 图 9 重力锚10°起吊工况的Mises应力分布和应力集中部位 Fig. 9 Mises stress distribution under 10° lifting condition of gravity anchor and stress concentration part

 图 10 工况2计算结果 Fig. 10 Result of conditions 2
2.2 理论强度校核

 $\sigma = \frac{{{F_Z}}}{{(B - d)t}} \leqslant \left[ \sigma \right] = \frac{{{\sigma _s}}}{{{n_s}}}。$ (1)

 图 11 吊耳孔示意图 Fig. 11 Schematic diagram of the ear hole

 $\tau = \dfrac{{{F_Z}}}{{2\left(e + \dfrac{d}{8}\right)t}} \leqslant \dfrac{{{\tau _{_S}}}}{{{n_s}}} = \dfrac{{(0.6\sim 0.8){\sigma _s}}}{{{n_s}}}$ (2)

3 结　语

 [1] 叶邦全. 海洋工程用锚类型及其发展综述[J]. 上海造船, 2012(3): 1-7. [2] SCLAVOUNOS P D, LEE S, DIPIETRO J. Floating offshore wind turbines: tension leg platform and taught leg buoy concepts supporting 3～5 MW wind turbines[R]. Proc European Wind Energy Conference EWEC, 2010: 20–23. [3] 李怀亮, 黄山田, 王晓飞, 等. 重力锚水平承载力特性的有限元分析[J]. 中国港湾建设, 2016, 36(1): 6-9. [4] 竺新文. 重力锚室内模型试验及数值模拟研究[D]. 天津: 天津大学, 2016. [5] 徐保照. 钙质土中锚固基础设计研究[D]. 天津: 天津大学, 2014. [6] 李飒, 竺新文, 李怀亮, 等. 水平荷载作用下重力锚室内模型试验及数值模拟分析[J]. 中国海上油气, 2018, 30(2): 152-157. [7] 韩森, 贾宝柱, 孙文正, 等. 多点锚泊定位系统布锚夹角的影响及优化分析[J]. 中国舰船研究, 2018, 13(5): 61-67. [8] TAYLOR R J. Interaction of anchors with soil and anchor design[R]. Technical Note of Naval Civil Engineering Laboratory, California, 1982: 1–50. [9] 闫宏生, 刘鹏飞, 孟祥伟, 等. 深水重力锚黏土质水平承载机理研究及数值模拟[J]. 中国造船, 2021, 62(3): 222-230. DOI:10.3969/j.issn.1000-4882.2021.03.020 [10] 杨鹏, 陈世海, 蒋岩, 等. 重力锚在“世越”号打捞中的应用[J]. 世界海运, 2017, 40(9): 7-10.