﻿ 50 kn高速无人艇半浸桨叶水动力性能研究
 舰船科学技术  2022, Vol. 44 Issue (23): 23-27    DOI: 10.3404/j.issn.1672-7649.2022.23.005 PDF
50 kn高速无人艇半浸桨叶水动力性能研究

Research on surface piercing propeller hydrodynamic performance of 50 kn high-speed unmanned boat
MA Wei-ze, TANG Xiao-guang
Wuhan Greenbay Marine Technology Co., Ltd., Wuhan 430083, China
Abstract: Based on the design and optimization of the semi-immersed propeller of 10.3 m high-speed craft, the hydrodynamic performance of the semi-immersed propeller propulsion system during the high-speed motion of the blade is studied in this paper, the hydrodynamic parameters of the blade are calculated by correlation diagrams, the design of the semi-immersed blade is optimized, and the blade is adjusted with the wedge section angle, finally, the results of the ship test show that when the wedge section angle of the blade increases by 60° , the pressure difference of the air cavity formed at the moment of the blade entering the water reaches the maximum, which increases the efficiency of the blade under high-speed operation, the thrust of the blade is increased and the sailing speed is increased effectively.
Key words: hige speed boat     surface piercing propeller     trailing edge     wedge face     angle
0 引　言

2012年，Misra等[4]发表了关于半潜式螺旋桨的实验研究结果，这种螺旋桨具有常规螺旋桨在不同浸泡比下的共同几何形状。比较了实验数据如叶片的力和力矩与计算流体动力学方法的结果，开发了一系列的不同横截面的四叶半浸桨，随边楔形面角度分别为0°，30°和60°。实验结果表明，在所有浸深比下，60°楔形面角度对半浸桨的性能有较大的影响，此时半浸桨的效率达到最大值。

1 关键问题 1.1 半浸桨的受力分析

 图 1 桨叶截面及入水通气截面示意图 Fig. 1 Immersion of surface piercing propellers

 图 2 六分量螺旋桨推力示意图 Fig. 2 Six-component propeller forces

1.2 半浸桨的受力计算方程

1.3 半浸桨原始计算分析

 图 3 30%浸没面积下 $J$ 和 ${\eta _p} - {\raise0.7ex\hbox{${{K_Q}}$} \mathord{\left/ {\vphantom {{{K_Q}} {{J^5}}}}\right.} \lower0.7ex\hbox{${{J^5}}$}}$ 图谱曲线 Fig. 3 J and ${\eta _p} - {\raise0.7ex\hbox{${{K_Q}}$} \mathord{\left/ {\vphantom {{{K_Q}} {{J^5}}}}\right.} \lower0.7ex\hbox{${{J^5}}$}}$ curve (h/D=30%)

 图 4 30%浸没面积下垂向力系数曲线 Fig. 4 Vertical force ratiocurve curve (h/D=30%)

 图 5 47%浸没面积下 $J$ 和 ${\eta _p} - {\raise0.7ex\hbox{${{K_Q}}$} \mathord{\left/ {\vphantom {{{K_Q}} {{J^5}}}}\right.} \lower0.7ex\hbox{${{J^5}}$}}$ 图谱曲线 Fig. 5 J and ${\eta _p} - {\raise0.7ex\hbox{${{K_Q}}$} \mathord{\left/ {\vphantom {{{K_Q}} {{J^5}}}}\right.} \lower0.7ex\hbox{${{J^5}}$}}$ curve (h/D=47%)

 图 6 47%浸没面积下垂向力系数曲线 Fig. 6 Vertical force ratiocurve curve (h/D=47%)

 图 7 58%浸没面积下 $J$ 和 ${\eta _p} - {\raise0.7ex\hbox{${{K_Q}}$} \mathord{\left/ {\vphantom {{{K_Q}} {{J^5}}}}\right.} \lower0.7ex\hbox{${{J^5}}$}}$ 图谱曲线 Fig. 7 J and ${\eta _p} - {\raise0.7ex\hbox{${{K_Q}}$} \mathord{\left/ {\vphantom {{{K_Q}} {{J^5}}}}\right.} \lower0.7ex\hbox{${{J^5}}$}}$ curve (h/D=58%)

 图 8 58%浸没面积下垂向力系数曲线 Fig. 8 Vertical force ratiocurve curve (h/D=58%)

 图 9 主机功率、螺旋桨吸收功率与转速对比曲线表 Fig. 9 RPM to engine power curve

2 半浸桨改进方法

 图 10 母型桨可变韦伯数的KT和10KQ（30%浸没面积） Fig. 10 Original propeller J to KT/10KQ curve (h/D=30%）

 图 11 母型桨可变韦伯数的KT和10KQ（40%浸没面积） Fig. 11 Original propeller J to KT/10KQ Curve (h/D=40%）

 图 12 母型桨可变韦伯数的KT和10KQ（70%浸没面积） Fig. 12 Original propeller J to KT/10KQ curve (h/D=70%）

 图 13 更改后半浸桨47%浸没面积下推力与阻力曲线对比 Fig. 13 The propeller blade Improved Vs to Rs curve (h/D=47%）

3 实船试验结果分析 3.1 数据分析

3.2 实船试验分析

4 结　语

 [1] GHOSE, J. P. Basic ship propulsion[M]. Allied publishers, 2004. [2] SZANTYR J A. Experimental study of surface piercing propellers for a patrol boat[J] . FAST, 1997. [3] RAINS D A. Semi- submerged propeller for monohull displacement ship[C]// 81 Propeller Symposium, 1981. [4] MISRA RPGSC, SHA OP, SURYANARAYANA C, et al. Development of a four-bladed surface piercing propeller series[J]. Naval Engineers Journal, 2012; 124(4): 105–138. [5] 马卫泽, 桂行, 唐小光. 表面桨实用设计方法[J]. 船海工程, 2018, 47(3): 3. DOI:10.3963/j.issn.1671-7953.2018.03.016