﻿ 双体船不同状态流场特性与力学性能仿真
 舰船科学技术  2022, Vol. 44 Issue (23): 6-11    DOI: 10.3404/j.issn.1672-7649.2022.23.002 PDF

1. 中国石油化工股份有限公司 胜利油田分公司海洋石油船舶中心，山东 烟台 265700;
2. 武汉理工大学 交通与物流工程学院，湖北 武汉 430063

Numerical simulation of flow field characteristics and mechanical properties of catamaran in different states
SUN Hua1, LI Peng-zhan1, QI Fang-li1, ZHANG Jiu-an1, XU Tong-rui1, LIU Kun2
1. Offshore Oil Shipping Center, Shengli Oilfield Branch of Sinopec, Yantai 265700, China;
2. School of Transportation and Logistics Engineering, Wuhan University of Technology, Wuhan 430063, China
Abstract: The numerical simulation method is used to analyze the catamaran's motion resistance and the variation of its surrounding flow field. Firstly, the catamaran is set as a fixed attitude, and the turbulent model is used to simulate the relative motion flow field of the ship. Then, the absolute motion flow field of the ship in pitching and undulating motion mode is analyzed by using the slip grid technology, in order to explore the influence of the change of hull attitude on the flow field and resistance of the ship. The results show that CFD numerical method are in good agreement with the experimental data, and it has good reliability. This method can be used as an effective analysis tool for ship designers to analyze flow field and predict ship resistance.
Key words: CFD     catamaran     sliding mesh     flow field analysis     resistance prediction
0 引　言

1 控制方程与自由液面法

 $\left\{ \begin{gathered} \frac{{\partial \rho }}{{\partial t}} + \nabla \cdot (\rho v) = 0，\\ \frac{\partial }{{\partial t}}(\rho v) + \nabla \cdot (\rho {v^2}) = - \nabla p + \nabla \cdot \tau + \rho g + F 。\\ \end{gathered} \right.$ (1)

 $\tau = \mu \left[ {(\nabla v + \nabla {v^T}) - \frac{2}{3}(\nabla \cdot v)I} \right]。$ (2)

 $\frac{{\partial {\alpha _q}}}{{\partial t}} + v \cdot \nabla {\alpha _q} = 0。$ (3)

2 模型网格与边界条件

 图 1 双体船模型 Fig. 1 Model of catamaran

 图 2 固定姿态模型网格划分及其边界条件设置 Fig. 2 Mesh generation and boundary condition setting of fixed attitude

 图 3 绝对运动模型网格划分及其边界条件设置 Fig. 3 Mesh generation and boundary condition setting of absolute motion
3 结果与讨论 3.1 船体固定姿态的相对运动流场分析

 图 4 双体船周围自由液面高度变化仿真结果 Fig. 4 Simulation results of free liquid level change around catamaran

 图 5 双体船周围自由液面高度变化实验结果 Fig. 5 Experimental results of free liquid level change around catamaran

 图 6 总阻力系数随傅汝德数变化对比结果 Fig. 6 Comparison of total resistance coefficient with Froude number
3.2 船体固定姿态的绝对运动流场分析

 图 7 绝对运动状态下船体流场波形与网格变化 Fig. 7 Waveform and grid change of ship flow field in absolute motion
3.3 船体仰俯、起伏相对运动流场分析

 图 8 船体俯仰与起伏绝对运动下的自由液面变化 Fig. 8 Free liquid level change under absolute motion of hull pitching and heave

 图 9 不同傅汝德数下的俯仰起伏参数变化 Fig. 9 Changes of pitch fluctuation parameters under different Froude number

 图 10 总阻力系数随傅汝德数变化对比结果 Fig. 10 Comparison of total resistance coefficient with Froude number
3.4 船体受波浪影响的相对运动流场分析

 图 11 船体受波浪影响下的自由液面变化 Fig. 11 Free liquid level change of ship hull affected by waves
4 结　语

 [1] 冯萌萌. 基于CFD的小水线面双体船多目标优化[D]. 大连: 大连理工大学, 2016. [2] HAASE M. Energy-efficient large medium-speed catamarans: Hull form design by full-scale CFD simulations[J]. Ship Technology Research, 2016, 63(2): 133-134. DOI:10.1080/09377255.2016.1208974 [3] 熊文海, 周振路, 陈力. 基于细长体理论的小水线面双体船操纵性预报[J]. 中国航海, 2007(4): 9-12. XIONG W H, ZHOU Z R, CHEN L. Maneuverability forecast of SWATH based on slender body theory[J]. China Navigation, 2007(4): 9-12. DOI:10.3969/j.issn.1000-4653.2007.04.003 [4] NAJAFI A, ALIMIRZAZADEH S, SEIF M S. RANS simulation of interceptor effect on hydrodynamic coefficients of longitudinal equations of motion of planing catamarans[J]. Journal of the Brazilian Society of Mechanical Sciences & Engineering, 2014, 37(4): 1-19. [5] 王晓燕, 李婷婷. 基于CFD的双体船航行阻力研究[J]. 舰船科学技术, 2016, 38(10): 4-6. WANG X Y, LI T T. Research on navigation resistance of catamaran based on CFD[J]. Ship Science and Technology, 2016, 38(10): 4-6. [6] HAJIABADI A, SHAFAGHAT R, MOGHADAM H K. A study into the effect of loading conditions on the resistance of asymmetric high-speed catamaran based on experimental tests[J]. Alexandria Engineering Journal, 2017, 57(4): 1713-1720. [7] 刘军, 易宏. 小水线面双体船兴波阻力特性研究[J]. 武汉理工大学学报:交通科学与工程版, 2010, 34(1): 117-121. LIU J, YI H. Study on wave-making resistance characteristics of small waterplane catamaran[J]. Journal of Wuhan University of Technology:Traffic Science and Engineering Edition, 2010, 34(1): 117-121. [8] 胡晓峰. 基于CFD的穿浪双体船耐波性预报技术研究[D]. 哈尔滨: 哈尔滨工程大学, 2015. [9] 邓锐, 黄德波, 于雷, 等. 影响双体船阻力计算的流场CFD因素探讨[J]. 哈尔滨工程大学学报, 2011, 32(2): 141-147. DENG R, HUANG D B, YU L, etal. Discussion on CFD factors affecting the calculation of catamaran resistance[J]. Journal of Harbin Engineering University, 2011, 32(2): 141-147. DOI:10.3969/j.issn.1006-7043.2011.02.002 [10] COFFEY T, MCMULLAN R J, KELLEY C T, et al. Globally convergent algorithms for nonsmooth nonlinear equations in computational fluid dynamics[J]. Journal of Computational & Applied Mathematics, 2001, 152(2): 69-81. [11] 王福军. 计算流体动力学分析-CFD软件原理与应用[M]. 清华大学出版社, 2004. [12] BROGLIA R, JACOB B, ZAGHI S, et al. Experimental investigation of interference effects for high-speed catamarans[J]. Ocean Engineering, 2014, 76(12): 75-85.