﻿ 粗糙表面水下航行体阻力特性分析
 舰船科学技术  2022, Vol. 44 Issue (23): 1-5    DOI: 10.3404/j.issn.1672-7649.2022.23.001 PDF

1. 海军装备部 项目管理中心，北京 100071;
2. 中国船舶集团有限公司系统工程研究，北京 100094

Resistance analysis of underwater vehicle with tough surface
DONG Peng1, CUI Zi-xian2, DING Xiao-dong2
1. Marine Equipment Project Management Center, Beijing 100071, China;
2. Systems Engineering Research Institute, CSSC, Beijing 100094, China
Abstract: Based on the SUBOFF underwater vehicle model, numerical analysis is carried out on smooth surface and rough surface at different speeds. First, numerical simulation of the test of the SUBOFF model at different speeds is carried out by given different incoming flow speeds, and the grid independence verification is validated. The numerical results are compared with the experimental data of the Taylor tank to verify the accuracy of the numerical experiments. Subsequently, numerical experiments were carried out on the hydrodynamic characteristics of smooth and rough surface vehicles through valid numerical method. The results show that compared with the smooth surface vehicle, the resistance of the rough surface vehicle is increased. The total resistance of a smooth surface vehicle is 8%～10% lower than that of a rough surface vehicle with a height of 2 mm, and 7%～10% less than that of a rough surface vehicle with a height of 1 mm. Under the same resistance, when the speed of a rough surface with a height of 2 mm is 20 kn, the speed of a smooth body can reach 21.6 kn.
Key words: underwater vehicle     resistance     SUBOFF model
0 引　言

1 计算模型与方法 1.1 几何模型

 图 1 光滑和粗糙表面SUBOFF模型几何示意图 Fig. 1 SUBOFF model with smooth and rough surface
1.2 计算方法

1）质量守恒方程

 $\dfrac{{\partial \rho }}{{\partial t}} + \dfrac{{\partial (\rho u)}}{{\partial x}} + \dfrac{{\partial (\rho v)}}{{\partial y}} + \dfrac{{\partial (\rho w)}}{{\partial z}} = 0 。$ (1)

2）动量守恒方程

 \begin{aligned}[b] & {\dfrac{{\partial (\rho u)}}{{\partial t}} + \nabla \cdot (\rho u\vec u) = - \dfrac{{\partial \rho }}{{\partial x}} + \dfrac{{\partial {\tau _{xx}}}}{{\partial x}} + \dfrac{{\partial {\tau _{yx}}}}{{\partial y}} + \dfrac{{\partial {\tau _{zx}}}}{{\partial z}} + {F_x}} ，\\ & {\dfrac{{\partial (\rho v)}}{{\partial t}} + \nabla \cdot (\rho v\vec u) = - \dfrac{{\partial \rho }}{{\partial y}} + \dfrac{{\partial {\tau _{xy}}}}{{\partial x}} + \dfrac{{\partial {\tau _{yy}}}}{{\partial y}} + \dfrac{{\partial {\tau _{zy}}}}{{\partial z}} + {F_y}} ，\\ & {\dfrac{{\partial (\rho w)}}{{\partial t}} + \nabla \cdot (\rho w\vec u) = - \dfrac{{\partial \rho }}{{\partial z}} + \dfrac{{\partial {\tau _{xz}}}}{{\partial x}} + \dfrac{{\partial {\tau _{yz}}}}{{\partial y}} + \dfrac{{\partial {\tau _{zz}}}}{{\partial z}} + {F_z}} 。\end{aligned} (2)

3）湍流模型

 \begin{aligned} & {\dfrac{\partial }{{\partial t}}(\rho k) + \dfrac{\partial }{{\partial {x_i}}}\left( {\rho k{u_i}} \right) = \dfrac{\partial }{{\partial {x_j}}}\left( {{{{\varGamma }}_k}\dfrac{{\partial k}}{{\partial {x_j}}}} \right) + {G_k} - {Y_k} + {S_k}} ，\\ & {\dfrac{\partial }{{\partial t}}(\rho \omega ) + \dfrac{\partial }{{\partial {x_i}}}\left( {\rho \omega {u_i}} \right) = \dfrac{\partial }{{\partial {x_j}}}\left( {{{{\varGamma }}_\omega }\dfrac{{\partial \omega }}{{\partial {x_j}}}} \right) + {G_\omega } - {Y_\omega } + {S_\omega }} 。\end{aligned} (3)

1.3 计算模型

 图 2 计算域示意图 Fig. 2 Computational domain

2 计算方法验证 2.1 SUBOFF标准模型阻力验证

 图 3 SUBOFF计算网格 Fig. 3 Computational mesh for SUBOFF

2.2 网格无关性验证

 图 4 不同网格计算得到的阻力随航速变化结果 Fig. 4 Numerical results from different mesh

3 计算结果与分析 3.1 压力分布特性

 图 5 航速5.93 kn光滑表面SUBOFF压力云图 Fig. 5 Pressure contour of SUBOFF with smooth surface at 5.93 kn

 图 6 航速5.93 kn粗糙表面SUBOFF压力云图 Fig. 6 Pressure contour of SUBOFF with tough surface at 5.93 kn
3.2 速度分布特性

 图 7 航速5.93 kn光滑表面SUBOFF速度矢量图 Fig. 7 Velocity vector of SUBOFF with smooth surface at 5.93 kn

 图 8 不同航速下粗糙表面SUBOFF速度矢量图 Fig. 8 Velocity vector of SUBOFF with tough surface

3.3 不同航速下对比分析

 图 9 不同航速下光滑表面和粗糙表面SUBOFF阻力对比 Fig. 9 Comparison of resistance of SUBOFF with tough surface and smooth surface

 图 10 不同阻力下光滑表面和粗糙表面SUBOFF航行速度对比 Fig. 10 Comparison of velocity of SUBOFF with tough surface and smooth surface

4 结　语

 [1] 王玉婷, 向先波, 王瑟. 基于CFD和直接计算技术的航行器阻力系数算法研究[J]. 中国科技论文, 2016, 11(19): 2164-2168. DOI:10.3969/j.issn.2095-2783.2016.19.003 [2] 王庆旭. 三体滑行艇阻力和稳定性研究[D]. 哈尔滨: 哈尔滨工程大学, 2012. [3] FLORIAN R. Menter. Improved Two-Equation k-ω Turbulence Models for Aerodynamic Flows. NASA Technical Memorandum 103975. 1992. [4] 许锦宇. 作业型AUV总体设计与水动力性能分析[D]. 哈尔滨: 哈尔滨工程大学, 2017. [5] SAVITSKY D. Hydrodynamic design of planing hulls[J]. Marine Technology, 1964, 1(1): 71-95. [6] GHASSEMI H, KOHANSAL AR. Higher order boundary element method applied to the hydrofoil beneath the free surface[C]// Proceedings of the 28th International Conference on Ocean, Offshore and Engineering. Honolulu, Hawaii USA: [s. N. ], 2009. [7] 苏玉民, 陈庆童, 沈海龙, 等. 基于 CFD 技术和 2.5D 理论的滑行艇水动升力计算[C]第十五届中国海洋(岸)工程学术讨论会论文集. 214-218. [8] 陈庆童. 滑行艇在高速航行时横向水动力的数值计算[D]. 哈尔滨: 哈尔滨工程大学, 2012. [9] 李永坤. 全系统水下航行体流固耦合计算及水动力噪声计算[D]. 大连: 大连理工大学, 2020.