﻿ 船舶主机温度控制方法优化
 舰船科学技术  2022, Vol. 44 Issue (20): 120-123    DOI: 10.3404/j.issn.1672-7649.2022.20.024 PDF

Optimization of temperature control method for marine main engine
ZHU Jian-zhong
Jiangsu Maritime Institute, Nanjing 211100, China
Abstract: This paper studies the mathematical model of the ship's main engine, emphatically analyzes the mathematical model of the combustion heat release rate of the ship's main engine, discusses the influence of the ship's sailing speed on the fuel consumption of the ship's main engine, and gives the curve relationship between the change of the fuel consumption rate of the ship's main engine and the power of the ship's main engine; The thermodynamic model of marine main engine water cooling system is established; Finally, the optimization method of temperature control for marine main engine is studied.
Key words: ship     host     temperature control
0 引　言

1 船舶主机数学模型的构建 1.1 船舶主机燃烧放热率数学模型

 ${Q_f} = \Delta U + W + {Q_W}\text{。}$ (1)

 $\frac{{{\rm{d}}{Q_f}}}{{{\rm{d}}\varphi }} = \frac{{{\rm{d}}U}}{{{\rm{d}}\varphi }} + {p_z}\frac{{{\rm{d}}{V_z}}}{{{\rm{d}}\varphi }} + \frac{{{\rm{d}}{Q_W}}}{{{\rm{d}}\varphi }} = {H_u} \cdot {g_f} \cdot \frac{{{\rm{d}}X}}{{{\rm{d}}\varphi }}\text{。}$ (2)

 $\frac{{{\rm{d}}W}}{{{\rm{d}}\varphi }} = {p_z}\frac{{{\rm{d}}{V_z}}}{{{\rm{d}}\varphi }}\text{。}$ (3)

 $\left\{ {\begin{array}{*{20}{l}} {\Delta U = {m_{z\left( {i + 1} \right)}}{c_{m\left( {i + 1} \right)}}{T_{z\left( {i + 1} \right)}} - {m_{z\left( i \right)}}{c_{m\left( i \right)}}{T_{z\left( i \right)}}}，\\ {{m_z} = {m_a} + {g_f}X} 。\end{array}} \right.$ (4)

 图 1 船舶主机燃烧率随曲轴转角的变化曲线 Fig. 1 Curve of combustion rate of marine main engine changing with crankshaft angle
 $\frac{{{\rm{d}}X}}{{{\rm{d}}\varphi }} = \frac{{{\rm{d}}{X_1}}}{{{\rm{d}}\varphi }} + \frac{{{\rm{d}}{X_2}}}{{{\rm{d}}\varphi }} + \frac{{{\rm{d}}{X_3}}}{{{\rm{d}}\varphi }}\text{。}$ (5)
1.2 船舶航速对主机燃油消耗的影响

 $L = vt\text{，}$ (6)

 $t = \frac{{\sum {m \times {{10}^3}} }}{B}\text{。}$ (7)

 $B = g \cdot p\text{，}$ (8)
 $L = \frac{{v\sum {m \times {{10}^3}} }}{{g \cdot p}}\text{。}$ (9)

 ${L_1} = \frac{{{P_0}}}{{{P_1}}} \cdot \frac{{{v_1}}}{{{v_0}}} \cdot {L_0}\text{。}$ (10)

 $p = c{v^3}\text{，}$ (11)
 ${L_1} = {\left( {\frac{{{v_0}}}{{{v_1}}}} \right)^2} \cdot {L_0}\text{。}$ (12)

 $\sum {{m_1} = {{\left( {\frac{{{v_1}}}{{{v_0}}}} \right)}^2} \cdot \sum {{m_0}} } \text{。}$ (13)

 图 2 船舶主机燃油消耗率的变化量和主机功率之间的关系 Fig. 2 Relationship between variation of fuel consumption rate of marine main engine and power of marine main engine
2 船舶主机水冷系统热力学模型

 图 3 船舶主机水冷系统结构 Fig. 3 Structure of marine main engine water cooling system

 ${W_D}\frac{{{\rm{d}}{t_{hi}}}}{{{\rm{d}}\tau }} = {Q_{{\rm{in}}}} - {Q_{{\rm{out}}}} = Q\left( t \right) - {m_h}{C_w}\left( {{t_{hi}} - {t_{di}}} \right)\text{。}$ (14)

 ${W_D} = {M_w}{C_w} + {M_c}{C_c}\text{。}$ (15)

 $Q\left( t \right) = \frac{{f \cdot P \cdot {b_e} \cdot \xi }}{{3600}}\text{。}$ (16)

 $\frac{{{\rm{d}}{t_{hi}}}}{{{\rm{d}}\tau }} = - \frac{{{m_h}{C_w}}}{{{W_D}}}{t_{hi}} + \frac{{{m_h}{C_w}}}{{{W_D}}}{t_{di}} + \frac{{f \cdot P \cdot {b_e} \cdot \xi }}{{3600{W_D}}}\text{。}$ (17)

 ${m_z} = \frac{{K \cdot M}}{{\Delta T}}\text{。}$ (18)

 ${t_{zo}} = {t_{hi}} - 25.6 \times \frac{{16}}{{{m_z}}}\text{，}$ (19)
 ${m_z} = \left( {1 - {x_z}} \right){m_h}\text{，}$ (20)
 ${t_{hoi}} = {x_z}{t_{hi}} + \left( {1 - {x_z}} \right){t_{zo}}\text{。}$ (21)
3 船舶主机温度优化控制方法

PID算法在实现过程中不需要构造精确的数学模型，因此简单易懂，是最早在工业控制中得到大规模应用的控制器。PID控制器的输入和输出之间的数学关系为：

 $u\left( t \right) = {K_p}\left[ {e\left( t \right) + \frac{1}{{{T_i}}}\int {e\left( t \right){\rm{d}}t + {T_d}\frac{{{\rm{d}}e\left( t \right)}}{{{\rm{d}}t}}} } \right]\text{。}$ (22)

 $e\left( t \right) = {y_{set}}\left( t \right) - y\left( t \right)\text{。}$ (23)

 $d{x_s}\left( t \right) = {K_p}e\left( t \right) + {K_I}\int {e\left( t \right){\rm{d}}t + {K_D}\frac{{{\rm{d}}e\left( t \right)}}{{{\rm{d}}t}}} \text{。}$ (24)

 ${K_I} = \frac{{{K_p}}}{{{T_i}}}\text{，}$ (25)
 ${K_D} = {K_p} \times {T_d}\text{，}$ (26)
 ${x_s} = {x_0} + d{x_s}\left( t \right)\text{。}$ (27)

 图 4 缸套出水温度控制曲线 Fig. 4 Cylinder liner outlet water temperature control curve
4 结　语

 [1] 何一文, 李珍. 船舶主机温度控制方法优化[J]. 舰船科学技术, 2018, 40(14): 85-87. [2] 夏洪永. 船舶主机冷却水出口温度控制系统[J]. 舰船科学技术, 2018, 40(12): 121-123. [3] 屈宽生, 李明哲. 基于计算机模糊神经网络的船舶主机温度控制与仿真[J]. 舰船科学技术, 2020, 40(20): 82-84. [4] 王永祥, 徐东华, 李春香, 等. 船舶中央冷却水系统变频水泵流量特征[J]. 船舶工程, 2020, 42(3): 74-79+92. [5] 徐红明, 陈逸宁. 船舶柴油机缸套冷却水系统动态特性建模与仿真[J]. 船海工程, 2010, 39(2): 82-85. DOI:10.3963/j.issn.1671-7953.2010.02.0023 [6] 马量, 韩雪峰, 张均东, 等. 船舶主机缸套冷却水温度前馈-反馈控制的研究[J]. 船舶工程, 2009, 31(4): 20-23. DOI:10.3969/j.issn.1000-6982.2009.04.006 [7] 吴桂涛, 尹自斌, 孙培廷. 主机套缸冷却水出口温度控制方法[J]. 交通运输工程学报, 2003(4): 35-38. [8] 李海峰, 赵殿礼, 张春来. 船舶主柴油机缸套冷却水温度智能控制[J]. 大连海事大学学报, 2007(S1): 77-80. DOI:10.3969/j.issn.1006-7736.2007.z1.023