﻿ 燃气轮机定温掺混系统多变量解耦控制器设计
 舰船科学技术  2022, Vol. 44 Issue (20): 102-106    DOI: 10.3404/j.issn.1672-7649.2022.20.020 PDF

Multivariable decoupling control design of constant temperature mixing system for gas turbine
XU Tie-yan, WEI Wei, WEI Peng-xin, ZHOU Yu-feng
Gas Turbine Division, The 703 Research Institute of CSSC, Harbin 150078, China
Abstract: For the problem of undesired cooling water temperature change of marine intercooled cycle gas turbine seawater heat exchanger, a mathematical model of multiple input and multiple output for constant temperature mixing system was established. Based on the mathematical model and actual physical state of the system, the whole control loop is decoupled by introducing virtual control quantity. The controllers for inlet water temperature of seawater heat exchanger and level of the mixing tank are designed based on incremental PID control algorithm. The proposed algorithm is applied to a marine intercooled cycle gas turbine integrated test platform, and the test results show that the designed multi-variable PID decoupling controller achieves good decoupling control effect and can meet the control requirements of seawater heat exchanger.
Key words: gas turbine     intercooling cycle     constant temperature mixing     decoupling control
0 引　言

1 海水换热器定温掺混系统介绍

 图 1 海水换热器定温掺混系统示意图 Fig. 1 Schematic diagram of constant temperature mixing system of seawater heat exchanger

2 定温掺混系统解耦控制器设计

 $\frac{{{\rm{d}}M}}{{{\rm{d}}t}} = {F_1} - {F_2} + {F_3}，$ (1)
 $\frac{{{\rm{d}}MT}}{{{\rm{d}}t}} = {F_1}{T_1} - {F_2}{T_2} + {F_3}{T_3}。$ (2)

 $\frac{{{\rm{d}}M}}{{{\rm{d}}t}}{T_2} + M\frac{{{\rm{d}}{T_2}}}{{{\rm{d}}t}} = {F_1}{T_1} - {F_2}{T_2} + {F_3}{T_3} ，$ (3)

 $M\frac{{{\rm{d}}{T_2}}}{{{\rm{d}}t}} = {F_1}({T_1} - {T_2}) + {F_3}({T_3} - {T_2})，$ (4)

 ${T_1} < {T_2} < {T_3}。$ (5)

 ${F_V} = {F_1} + {F_3}，$ (6)
 ${T_V} = \frac{{{F_1}{T_1} + {F_3}{T_3}}}{{{F_V}}} 。$ (7)

 $\frac{{{\rm{d}}M}}{{{\rm{d}}t}} = {F_V} - {F_2}，$ (8)
 $\frac{{{\rm{d}}{T_2}}}{{{\rm{d}}t}} = \frac{{{F_V}}}{M}({T_V} - {T_2})。$ (9)

 $M(s) = \frac{1}{s}({F_V}(s) - {F_2}(s))，$ (10)
 ${T_2}(s) = \frac{1}{{{T_m}s + 1}}{T_V}(s)。$ (11)

 图 2 定温掺混系统控制结构图 Fig. 2 Control structure diagram of constant temperature mixing system
 ${F_{1sp}} = {F_V}\frac{{{T_3} - {T_V}}}{{{T_3} - {T_1}}}，$ (12)
 ${F_{3sp}} = {F_V}\frac{{{T_V} - {T_1}}}{{{T_3} - {T_1}}}。$ (13)

${F_1}_{sp}$ ${F_{3sp}}$ 为设定值，控制阀开度 ${V_1}$ ${V_3}$ 为控制量，流量 ${F_1}$ ${F_3}$ 为被控量构成非耦合的副控制回路。PID控制器采用增量式离散PID控制算法，其能够满足控制要求。

3 系统性能分析及应用效果

 图 3 不同工况下的定温掺混系统水温及控制偏差 Fig. 3 Water temperature of constant temperature mixing system under different working conditions

 图 5 不同工况下的掺混水箱进出水流量及阀门开度 Fig. 5 Inlet and outlet flow of mixing tank and opening of the valve under different working conditions

 图 4 不同工况下的掺混水箱液位及控制偏差 Fig. 4 Mixing tank level under different working conditions

4 结　语

1）针对船用间冷循环燃气轮机海水换热器的多输入多输出定温掺混系统，基于该系统的数学模型及实际物理状态，通过引入虚拟控制量完成了对整个控制回路的解耦。解耦后的模型便于采用经典的控制算法进行设计。

2）通过在某型船用间冷循环燃气轮机整机综合试验台的试验验证，所设计的海水换热器进口水温以及掺混水箱液位调节的解耦PID控制器，在不同的燃机工况下均能取得比较好的解耦控制效果，满足海水换热器的工作要求。

 [1] 闻雪友, 肖东明. IC循环船用燃气轮机的可行性研究[J]. 热能动力工程, 2009, 24(1): 60-64+142-143. [2] 闫大海, 张晗. 船用燃气轮机发展趋势分析[J]. 舰船科学技术, 2021, 43(10): 84-88. YAN D H, ZHANG H. Development trend analysis of marine gas turbine[J]. Ship Science and Technology, 2021, 43(10): 84-88. [3] 刘瑞. 基于集成仿真的间冷循环燃气轮机性能优化及控制策略研究 [D]. 哈尔滨: 哈尔滨工程大学, 2020. [4] 李铁磊, 刘瑞, 王志涛, 等. 间冷循环燃气轮机集成仿真及优化匹配方法[J]. 哈尔滨工程大学学报, 2021, 42(8): 1195-1202. LI T L, LIU R, WANG Z T, et al. Integrated simulation and optimization matching methods of intercooled gas turbines[J]. Journal of Harbin Engineering University, 2021, 42(8): 1195-1202. DOI:10.11990/jheu.202005028 [5] 李贝贝, 李飞, 张晓云. 燃气轮机间冷器设计及试验研究[J]. 热能动力工程, 2019, 34(1): 23-26+50. LI B B, LI F, ZHANG X Y. Design and experimental study for gas turbine intercooler[J]. Journal of Engineering for Thermal Energy and Power, 2019, 34(1): 23-26+50. [6] 周爱国, 曾智杰, 乌建中, 等. 风电叶片多点静力测试神经网络PID解耦控制[J]. 测控技术, 2021, 40(3): 123-129. ZHOU A G, ZENG Z J, WU J Z, et al. Neural network pid decoupling control for multi-point static test of wind turbine blades[J]. Measurement & Control Technology, 2021, 40(3): 123-129. [7] 张玉雪, 周军, 皇攀凌, 等. 改进粒子群的中药提取模糊PID解耦控制研究[J]. 控制工程, 2021, 1-8. ZHANG Y X, ZHOU J, HUANG P L, et al. Research on improved particle swarm optimization fuzzy pid decoupling control for extraction of traditional chinese medicine[J]. Control Engineering of China, 2021, 1-8. [8] 代冀阳, 应进, 李华英, 等. 基于PID网络的航空发动机多变量系统解耦控制[J]. 计算机仿真, 2011, 28(12): 27-31. DAI J Y, YING J, LI H Y, et al. Multivariable system of aeroengines decoupling controller based on PIDNN[J]. Computer Integrated Manufacturing Systems, 2011, 28(12): 27-31. DOI:10.3969/j.issn.1006-9348.2011.12.008 [9] LIU H J, HAN P, YAO W Y, et al. The research of PID neural network decoupling controller and its application in unit load system[C]//Proceedings of 2004 International Conference on Machine Learning and Cybernetics, 2004. [10] ZHAI L, CHAI T. Nonlinear decoupling pid control using neural networks and multiple models[J]. Journal of Control Theory and Applications, 2006, 4(1): 62-69. DOI:10.1007/s11768-006-5260-7 [11] 李磊, 毛志忠, 刘芳. 多模型自适应PID解耦控制器[J]. 东北大学学报(自然科学版), 2010, 31(11): 1546-1549.  LI L, MAO Z Z, LIU F. Nonlinear adaptive pid decoupling controller based on multiple models[J]. Journal of Northeastern University( Natural Science), 2010, 31(11): 1546-1549. DOI:10.12068/j.issn.1005-3026.2010.11.007