频率不变波束形成器设计为宽带基阵优化波束形成研究的一个重要方向。由于频率不变波束形成器FIB(frequency invariant beamformer)对于宽带入射信号在不同频率点上具有基本一致的幅度和相位响应。文献[1]将波束形成器设计转化为凸优化(convex optimization)问题,并通过采用内点[2]方法(interior-point method)对凸优化问题进行有效求解。文献[3]从最小方差无偏响应MVDR (minimum variance distortionless response)波束形成器导出对应的SOCP (second order cone programming)描述,实现均匀线列阵基于SOCP的旁瓣约束波束形成器,但上述方法适用于窄带阵处理。文献[4]提出基于最小平方最优变换准则构建宽带波束形成器设计。文献[5]提出适用于任意结构宽带线列阵的自适应波束形成器设计方法。但这2种方法无法实现宽带波束图的频率不变特性。文献[6]提出将空间响应偏差SRV(spatial response variation)约束应用于宽带阵列FIB设计,但此方法应用对象为实数加权阵列。文献[7]的波束形成器设计方法仅适用于宽带线列阵的非自适应FIB设计,无法高效抑制空间宽带干扰信号。文献[8]提出基于二阶锥规划的平面阵近场波束优化方法,但不适合应用于远场波束设计。文献[9]提出基于粒子群算法的宽带平面阵列方向图设计,但该方法适用范围为大阵元间距平面阵。
针对节拍延迟线TDL (tapped delay line)结构和复数加权系数的宽带平面阵,本文提出基于SRV约束的非自适应和自适应FIB设计。
1 背 景图1给出
$ {x_n}(t) = \sum\limits_{i = 0}^I {{s_i}(t + {\tau _n}({\theta _i},{\gamma _i}){T_s})} + {v_n}(t),n = 1,\cdots,N 。$ | (1) |
式中:
$ {\tau _n}({\theta _i},{\gamma _i}) = [({\alpha _n}\cos {\gamma _i}\sin {\theta _i} + {\beta _n}{s} {\kern 1pt} {\kern 1pt} in{\gamma _i})/{c_s}]/{T_s},$ | (2) |
其中
为便于理论分析和仿真验证,入射信号
$ {S_i}(f) = \left\{ {\begin{array}{*{20}{c}} \sigma _i^2/B,& f \in [{f_L},{f_U}],\\ {\text{0}},& f \notin [{f_L},{f_U}]。\end{array}} \right. $ | (3) |
$ {V_n}(f) = \left\{ {\begin{array}{*{20}{c}} \sigma _v^2/B,& f \in [{f_L},{f_U}] ,\\ 0,& f \notin [{f_L},{f_U}]。\end{array}} \right. $ | (4) |
式中:
$\begin{split} {x_{n,{\kern 1pt} {\kern 1pt} m}}(k) =& {x_n}(t - (m - 1){T_s}){|_{{\kern 1pt} t = k{T_s}}},n = 1,\cdots,N;\\ &m = 1,\cdots,M;k = 1,\cdots,K 。\end{split}$ | (5) |
其中
$\begin{split} {\boldsymbol{x}}(k) =& [{x_{1,{\kern 1pt} {\kern 1pt} 1}}(k),{x_{2,{\kern 1pt} {\kern 1pt} 1}}(k),\cdots,{x_{N,{\kern 1pt} {\kern 1pt} 1}}(k),{x_{1,{\kern 1pt} {\kern 1pt} 2}}(k),{x_{2,{\kern 1pt} {\kern 1pt} 2}}(k),\cdots,\\ &{x_{N,{\kern 1pt} {\kern 1pt} 2}}(k),\cdots,{x_{1,{\kern 1pt} {\kern 1pt} M}}(k),{x_{2,{\kern 1pt} {\kern 1pt} M}}(k),\cdots,{x_{N,{\kern 1pt} {\kern 1pt} M}}(k)]^{\rm{T}},\\[-10pt] \end{split}$ | (6) |
$ \begin{split}{\boldsymbol{w}} = &[{w_{1,{\kern 1pt} {\kern 1pt} 1}},{\kern 1pt} {\kern 1pt} {\kern 1pt} {w_{2,{\kern 1pt} {\kern 1pt} 1}},\cdots,{\kern 1pt} {\kern 1pt} {w_{N,{\kern 1pt} {\kern 1pt} 1}},{\kern 1pt} {\kern 1pt} {w_{1,{\kern 1pt} {\kern 1pt} 2}},{\kern 1pt} {w_{2,{\kern 1pt} {\kern 1pt} 2}},{\kern 1pt} \cdots,{\kern 1pt} \\ &{w_{N,{\kern 1pt} {\kern 1pt} 2}},\cdots,{\kern 1pt} {w_{1,{\kern 1pt} {\kern 1pt} M}},{\kern 1pt} {\kern 1pt} {w_{2,{\kern 1pt} {\kern 1pt} M}},\cdots,{\kern 1pt} {w_{N,{\kern 1pt} {\kern 1pt} M}}]^{\rm{T}} 。\end{split}$ | (7) |
宽带平面阵
$ {\boldsymbol{a}}(f,\theta ,\gamma ) = {{\boldsymbol{a}}_M}(f) \otimes {{\boldsymbol{a}}_N}(f,\theta ,\gamma ) ,$ | (8) |
其中,
$ {{\boldsymbol{a}}_M}(f) = {\left[1,{\kern 1pt} {e^{ - j2\text{π} f}},\cdots,{e^{ - j2\text{π} f(M - 1)}}\right]^{\rm{T}}} ,$ | (9) |
$ {{\boldsymbol{a}}_N}(f,\theta ,\gamma ) = {\left[{e^{j2\text{π} f{\tau _{{\kern 1pt} 1}}(\theta ,\gamma )}},{e^{j2\text{π} f{\tau _{{\kern 1pt} 2}}(\theta ,\gamma )}},\cdots,{e^{j2\text{π} f{\tau _{{\kern 1pt} N}}(\theta ,\gamma )}}\right]^{\rm{T}}} 。$ | (10) |
宽带平面阵波束图函数为:
$ b(f,\theta ,\gamma ) = {{\boldsymbol{w}}^{\rm{T}}}{\boldsymbol{a}}(f,\theta ,\gamma ) = {{\mathbf{a}}^{\rm{T}}}(f,\theta ,\gamma ){\boldsymbol{w}}。$ | (11) |
宽带平面阵输出信号为:
$ z(k) = \sum\limits_{n = 1}^N {\sum\limits_{m = 1}^M {{w_{n,{\kern 1pt} {\kern 1pt} m}}{x_{n,{\kern 1pt} {\kern 1pt} m}}(k)} } = {{\boldsymbol{w}}^{\rm{T}}}{\boldsymbol{x}}(k)。$ | (12) |
宽带平面阵输出功率为:
$ {P_z} = E[z(k){z^{\rm{H}}}(k)] = E[{{\boldsymbol{w}}^{\rm{T}}}{\boldsymbol{x}}(k){{\boldsymbol{x}}^{\rm{H}}}(k){{\boldsymbol{w}}^*}] = {{\boldsymbol{w}}^{\rm{T}}}{{\boldsymbol{R}}_x}{{\boldsymbol{w}}^*}。$ | (13) |
其中宽带平面阵空间协方差矩阵为:
$ {{\boldsymbol{R}}_x} = E[{\boldsymbol{x}}(k){{\boldsymbol{x}}^{\rm{H}}}(k)] = \sum\limits_{i = 0}^I {{{\boldsymbol{R}}_{{\kern 1pt} i}}} + {{\boldsymbol{R}}_v}。$ | (14) |
其中
$ {{SINR} _{in}} = \frac{{\sigma _0^2}}{{\displaystyle\sum\limits_{i = 1}^I {\sigma _i^2 + \sigma _v^2} }} 。$ | (15) |
输出信号z(k) 的信干噪比为:
$ {{SINR} _{out}} = \frac{{{{\boldsymbol{w}}^{\rm{T}}}{{\boldsymbol{R}}_0}{{\boldsymbol{w}}^*}}}{{{{\mathbf{w}}^{\rm{T}}}\left(\displaystyle\sum\limits_{i = 1}^I {{{\boldsymbol{R}}_i} + } {{\boldsymbol{R}}_v}\right){{\boldsymbol{w}}^*}}}。$ | (16) |
在实际处理中,宽带平面阵空间协方差矩阵
$ \widehat {{{\boldsymbol{R}}_x}} = \frac{1}{K}\sum\limits_{k = 1}^K {{\boldsymbol{x}}(k){{\boldsymbol{x}}^{{H}}}(k)} 。$ | (17) |
空间响应偏差函数
$ \begin{split} SRV(\theta ,\gamma ) =& \frac{1}{B}\int_{{f_L}}^{{f_U}} {|b(f,\theta ,\gamma ) - b({f_0},\theta ,\gamma ){|^2}{\rm{d}}f} =\\ &\frac{1}{B}\int_{{f_L}}^{{f_U}} {|{{\boldsymbol{w}}^{\rm{T}}}{\boldsymbol{a}}(f,\theta ,\gamma ) - {{\boldsymbol{w}}^{\rm{T}}}{\boldsymbol{a}}({f_0},\theta ,\gamma ){|^2}{\rm{d}}f}=\\ &{{\boldsymbol{w}}^{\rm{T}}}\frac{1}{B}\int_{{f_L}}^{{f_U}} {|{\boldsymbol{a}}(f,\theta ,\gamma ) - {\boldsymbol{a}}({f_0},\theta ,\gamma ){|^2}{\rm{d}}f} {{\boldsymbol{w}}^*} =\\ &{{\boldsymbol{w}}^{\rm{T}}}{\boldsymbol{J}}(\theta ,\gamma ){{\boldsymbol{w}}^*} 。\end{split} $ | (18) |
其中:
$ \overline {SRV} = (1/D)\sum\nolimits_{{\kern 1pt} d = 1}^D {SRV({\phi _d},{\varphi _d})} = {{\boldsymbol{w}}^{\rm{T}}}\overline {\boldsymbol{J}} {\kern 1pt} {\kern 1pt} {{\boldsymbol{w}}^*} 。$ | (19) |
其中
凸锥优化(convex conic optimization)问题的标准表达式如下:
$ \underset{y}{\mathrm{max}}{b}^{\rm T}ysubjecttoc-{A}^{\rm T}y\in \kappa ,$ | (20) |
式中:
$ {{SOC} ^{r + 1}} = \left\{ \left[ {\begin{array}{*{20}{c}} \mu \\ {\mathbf{\mu }} \end{array}} \right] \in \Re \times {{\mathbf{G}}^r}|\mu \geqslant ||{\mathbf{\mu }}||\right\},$ | (21) |
其中
$ \{ 0\} = \{ \mu \in {\boldsymbol{G}}|\mu = 0\}。$ | (22) |
其中
本文提出的宽带平面阵非自适应FIB属于固定波束形成器,复数加权系数向量
$ \begin{split} & \mathop {\min }\limits_{\boldsymbol{w}} \delta \; {\rm{subject}}\; {\rm{to}} \\ & {{{w}}^{\rm{T}}}{{a}}({f_0},{\vartheta _0},{\psi _0}) = 1, |{{{w}}^{\rm{T}}}{{a}}({f_0},{\vartheta _p},{\psi _q})| \leqslant \delta , \\ & ||{{w}}|| \leqslant {\varepsilon _1},{{{w}}^{\rm{T}}}\overline {{J}} {{{w}}^*} \leqslant {\varepsilon _2} \\ & {\vartheta _p} \in [ - {90^{\circ}},{\vartheta _0} - \Omega /2] \cup [{\vartheta _0} + \Omega /2 ,{90^{\circ}}], \\ & {\psi _q} \in [ - {90^{\circ}},{\psi _0} - \Omega /2] \cup [{\psi _0} + \Omega /2 ,{90^{\circ}}], \\ & p = 1,2 , \cdots,P ; q = 1,2,\cdots,Q 。\end{split} $ | (23) |
其中:(
$ \overline {\boldsymbol{J}} = {{\boldsymbol{U}}_b}{{\boldsymbol{\Lambda }}_b}{\boldsymbol{U}}_b^H。$ | (24) |
其中:
$\begin{split} {{\boldsymbol{w}}^{\rm{T}}}\overline {\boldsymbol{J}} {{\boldsymbol{w}}^*} =& {{\boldsymbol{w}}^{\rm{T}}}{{\boldsymbol{U}}_b}{{\boldsymbol{\Lambda }}_b}{\boldsymbol{U}}_b^{\rm{H}}{{\boldsymbol{w}}^*} = {({\boldsymbol{\Lambda }}_b^{0.5}{\boldsymbol{U}}_b^{\rm{H}}{{\boldsymbol{w}}^*})^{\rm{H}}}\times\\ &({\boldsymbol{\Lambda }}_b^{0.5}{\boldsymbol{U}}_b^{\rm{H}}{{\boldsymbol{w}}^*}) = ||{\boldsymbol{L}}_b^{\rm{H}}{{\boldsymbol{w}}^*}|{|^2}。\end{split} $ | (25) |
其中:
$ {{\mathbf{a}}_{{\kern 1pt} 1}}(f,\theta ,\gamma ){\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} = {[{Re} {\{ {\mathbf{a}}{\kern 1pt} {\kern 1pt} (f,\theta ,\gamma )\} ^{\rm{T}}}, - {Im} {\{ {\mathbf{a}}{\kern 1pt} {\kern 1pt} (f,\theta ,\gamma )\} ^{\rm{T}}}]^{\rm{T}}},$ | (26) |
$ {{\mathbf{a}}_{{\kern 1pt} 2}}(f,\theta ,\gamma ){\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} = {[{Im} {\{ {\mathbf{a}}{\kern 1pt} {\kern 1pt} (f,\theta ,\gamma )\} ^{\rm{T}}},{Re} {\{ {\mathbf{a}}{\kern 1pt} {\kern 1pt} (f,\theta ,\gamma )\} ^{\rm{T}}}]^{\rm{T}}} ,$ | (27) |
$ {{\boldsymbol{y}}_2} = {[{Re} {\{ {\boldsymbol{w}}\} ^{\rm{T}}},{Im} {\{ {\boldsymbol{w}}\} ^{\rm{T}}}]^{\rm{T}}},$ | (28) |
$ \widetilde {{{\boldsymbol{L}}_b}} = \left[ {\begin{array}{*{20}{c}} {{Re} \{ {\boldsymbol{L}}_b^{\rm{H}}\} }&{{Im} \{ {\boldsymbol{L}}_b^{\rm{H}}\} } \\ {{Im} \{ {\boldsymbol{L}}_b^{\rm{H}}\} }&{ - {Re} \{ {\boldsymbol{L}}_b^{\rm{H}}\} } \end{array}} \right]。$ | (29) |
其中:符号
$ {\boldsymbol{b}} = {[ - 1,0,0,...,0]^{\rm{T}}} ,$ | (30) |
$ {\boldsymbol{y}} = {[{y_1},{\boldsymbol{y}}_2^{\rm{T}}]^{\rm{T}}}, $ | (31) |
其中:
$ \begin{split}||{\boldsymbol{L}}_b^H{{\boldsymbol{w}}^*}|| =& ||{Re} {\kern 1pt} {\kern 1pt} ({\boldsymbol{L}}_{{\kern 1pt} b}^H{{\boldsymbol{w}}^*}) + j{Im} {\kern 1pt} {\kern 1pt} ({\boldsymbol{L}}_{{\kern 1pt} b}^H{{\boldsymbol{w}}^*})|| = \\ &\left\| {\begin{array}{*{20}{c}} {{Re} {\kern 1pt} {\kern 1pt} ({\boldsymbol{L}}_{{\kern 1pt} b}^H{{\boldsymbol{w}}^*})} \\ {{Im} {\kern 1pt} {\kern 1pt} ({\boldsymbol{L}}_{{\kern 1pt} b}^H{{\boldsymbol{w}}^*})} \end{array}} \right\| = \left\| {\widetilde {{{\boldsymbol{L}}_{{\kern 1pt} b}}}{\kern 1pt} {{\boldsymbol{y}}_2}} \right\|, \end{split}$ | (32) |
$ {{\boldsymbol{w}}^{\rm{T}}}{\boldsymbol{a}}(f,\theta ,\gamma ) = {\boldsymbol{a}}_1^{\rm{T}}(f,\theta ,\gamma ){{\boldsymbol{y}}_2} + j{\boldsymbol{a}}_2^{\rm{T}}(f,\theta ,\gamma ){{\boldsymbol{y}}_2}。$ | (33) |
利用上述表达式,可以将描述波束形成器的表达式(23)转化为如下所示具有4个约束条件的标准二阶锥规划形式,可以通过采用内点方法对上面的标准SOC问题进行求解。
$ \begin{split} & \mathop {\max }\limits_{\boldsymbol{y}} {{\boldsymbol{b}}^{\rm{T}}}{\boldsymbol{y}} {\rm{subject}} {\rm{to}} \\ & 1)\;{\boldsymbol{a}}_{ 1}^{\rm{T}}({f_0},{\vartheta _0},{\psi _0}){{\boldsymbol{y}}_2} = 1, {\boldsymbol{a}}_{ 2}^{\rm{T}}({f_0},{\vartheta _0},{\psi _0}){{\boldsymbol{y}}_2} = 0; \\ & 2)\;|{\boldsymbol{a}}_1^{\rm{T}}({f_0},{\vartheta _p},{\psi _q}){{\boldsymbol{y}}_2} + j {\boldsymbol{a}}_2^{\rm{T}}({f_0},{\vartheta _p},{\psi _q}){{\boldsymbol{y}}_2}| \leqslant {y_1}; \\ & 3)\;||{{\boldsymbol{y}}_2}|| \leqslant {\varepsilon _1}; \\ & 4)\;||\widetilde {{{\boldsymbol{L}}_b}}{{\boldsymbol{y}}_2}|| \leqslant \sqrt {{\varepsilon _2}} \\ & {\vartheta _p} \in [ - {90^{\circ}},{\vartheta _0} - \Omega /2] \cup [{\vartheta _0} + \Omega /2 ,{90^{\circ}}],\\ &{\psi _q} \in [ - {90^{\circ}}, {\psi _0} - \Omega /2] \cup [{\psi _0} + \Omega /2 ,{90^{\circ}}], \\ & p = 1,2 , ...,P ; q = 1,2,...,Q。\\ \end{split} $ | (34) |
本文提出的宽带平面阵自适应FIB属于自适应波束形成器,复数加权系数向量
$ \begin{split} & \mathop {\min }\limits_{\boldsymbol{w}} \delta {\rm{subject}} {\rm{to }} \\ & {{\boldsymbol{w}}^{\rm{T}}}{\boldsymbol{a}}({f_0},{\vartheta _0},{\psi _0}) = 1, |{{\boldsymbol{w}}^{\rm{T}}}{\boldsymbol{a}}({f_0},{\vartheta _p},{\psi _q})| \leqslant {\varsigma _1},\\ &{{\boldsymbol{w}}^{{\rm{T}}}} \widehat {{{\boldsymbol{R}}_{x} }} {{\boldsymbol{w}}^*} \leqslant \delta ,{{\boldsymbol{w}}^{\rm{T}}}\overline {\boldsymbol{J}} {{\boldsymbol{w}}^*} \leqslant {\varsigma _2} \\ & {\vartheta _p} \in [ - {90^{\circ}},{\vartheta _0} - \Omega /2] \cup [{\vartheta _0} + \Omega /2 ,{90^{\circ}}],\\ &{\psi _q} \in [ - {90^{\circ}},{\psi _0} - \Omega /2] \cup [{\psi _0} + \Omega /2 ,{90^{\circ}}], \\ & p = 1,2 , ...,P ; q = 1,2,...,Q 。\end{split} $ | (35) |
其中:(
$ \widehat {{{\boldsymbol{R}}_x}} = {{\boldsymbol{U}}_a}{{\boldsymbol{\Lambda }}_a}{\boldsymbol{U}}_a^{{H}},$ | (36) |
其中
$\begin{split}{{\boldsymbol{w}}^{\rm{T}}}\widehat {{{\boldsymbol{R}}_{x} }}{{\boldsymbol{w}}^*} =& {{\boldsymbol{w}}^{\rm{T}}}{{\boldsymbol{U}}_a}{{\boldsymbol{\Lambda }}_a}{\boldsymbol{U}}_a^{{H}}{{\boldsymbol{w}}^*} = {({\boldsymbol{\Lambda }}_a^{0.5}{\boldsymbol{U}}_a^{{H}}{{\boldsymbol{w}}^*})^{{H}}}\times\\ &({\boldsymbol{\Lambda }}_a^{0.5}{\boldsymbol{U}}_a^{{H}}{{\boldsymbol{w}}^*}) = ||{\boldsymbol{L}}_a^{{H}}{{\boldsymbol{w}}^*}|{|^2}。\end{split} $ | (37) |
其中
$ \widetilde {{{\boldsymbol{L}}_a}} = \left[ {\begin{array}{*{20}{c}} {{Re} \{ {\boldsymbol{L}}_a^{{H}}\} }&{{Im} \{ {\boldsymbol{L}}_a^{{H}}\} } \\ {{Im} \{ {\boldsymbol{L}}_a^{{H}}\} }&{ - {Re} \{ {\boldsymbol{L}}_a^{{H}}\} } \end{array}} \right]。$ | (38) |
根据上述表达式,可以获得:
$\begin{split} ||{\boldsymbol{L}}_a^{{H}}{{\boldsymbol{w}}^*}|| =& ||{Re} {\kern 1pt} {\kern 1pt} ({\boldsymbol{L}}_a^{{H}}{{\boldsymbol{w}}^*}) + j{Im} {\kern 1pt} {\kern 1pt} ({\boldsymbol{L}}_a^{{H}}{{\boldsymbol{w}}^*})|| = \\ &\left\| {\begin{array}{*{20}{c}} {{Re} {\kern 1pt} {\kern 1pt} ({\boldsymbol{L}}_a^{{H}}{{\boldsymbol{w}}^*})} \\ {{Im} {\kern 1pt} {\kern 1pt} ({\boldsymbol{L}}_a^{{H}}{{\boldsymbol{w}}^*})} \end{array}} \right\| = \left\| {\widetilde {{{\boldsymbol{L}}_a}}{\kern 1pt} {{\boldsymbol{y}}_2}} \right\|。\end{split} $ | (39) |
可以将式(35)转化为如下所示具有4个约束条件的标准二阶锥规划形式,可以通过采用内点方法对上面的标准SOC问题进行求解。
$ \begin{split} & \mathop {\max }\limits_{\boldsymbol{y}} {{\boldsymbol{b}}^{\rm{T}}}{\boldsymbol{y}} {\rm{subject}} {\rm{to}} \\ & 1)\;{\boldsymbol{a}}_{ 1}^{\rm{T}}({f_0},{\vartheta _0},{\psi _0}){{\boldsymbol{y}}_2} = 1, {\boldsymbol{a}}_{ 2}^{\rm{T}}({f_0},{\vartheta _0},{\psi _0}){{\boldsymbol{y}}_2} = 0; \\ & 2)\;|{\boldsymbol{a}}_1^{\rm{T}}({f_0},{\vartheta _p},{\psi _q}){{\boldsymbol{y}}_2} + j {\boldsymbol{a}}_2^{\rm{T}}({f_0},{\vartheta _p},{\psi _q}){{\boldsymbol{y}}_2}| \leqslant {\varsigma _1}; \\ & 3)\;||\widetilde {{{\boldsymbol{L}}_a}}{{\boldsymbol{y}}_2}|| \leqslant {y_1}; \\ & 4)\;||\widetilde {{{\boldsymbol{L}}_b}}{{\boldsymbol{y}}_2}|| \leqslant \sqrt {{\varsigma _2}} \\ & {\vartheta _p} \in [ - {90^{\circ}},{\vartheta _0} - \Omega /2] \cup [{\vartheta _0} + \Omega /2 ,{90^{\circ}}],\\ &{\psi _q} \in [ - {90^{\circ}},{\psi _0} - \Omega /2] \cup [{\psi _0} + \Omega /2 ,{90^{\circ}}], \\ & p = 1,2 , ...,P ; q = 1,2,...,Q。\end{split} $ | (40) |
本文提出的宽带平面阵优化波束形成设计方法适用与任意结构的宽带平面阵。在2个仿真中,选取一个
第1个仿真实例用于验证宽带平面阵的非自适应FIB设计。对于式(23)选取复数加权向量
第2个仿真实例用于验证宽带平面阵的自适应FIB设计。对于式(35)选取旁瓣级幅度约束值
本文针对具有TDL结构和复数加权系数的宽带平面阵,提出非自适应FIB设计和自适应FIB设计。非自适应FIB根据在参考频率点上主瓣方向的无偏响应约束、加权系数向量的范数约束以及平均空间响应偏差的幅度约束等3个条件下最小化在参考频率点上波束图旁瓣级的准则进行设计。自适应FIB根据在参考频率点上预测信号方向无偏响应约束、参考频率点上旁瓣区域旁瓣级约束以及平均空间响应偏差幅度约束等3个条件下最小化波束形成器输出功率的准则进行设计。通过将这2种 FIB 设计问题转换为标准 SOCP 形式后,可以采用内点方法进行有效求解。
[1] |
LEBRET H, BOYD S P. Antenna array pattern synthesis via convex optimization[J]. IEEE Transaction on. Signal Processing. 1997, 45(3): 526−532.
|
[2] |
STURM J F. Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones[J]. Optimization Methods and Software. 1999, 11(12): 625−653.
|
[3] |
LIU Jing, GERSHMAN A B , LUO Zhi-quan , et al. Adaptive beamforming with sidelobe control: A second-order cone programming approach[J]. IEEE Signal Processing Letter. 2003, 10(11): 331−334;.
|
[4] |
PARRA L C. Steerable frequency invariant beamforming for arbitrary arrays[J]. Journal of the Acoustical Society of America, 2006, 119(6): 3839−3847.
|
[5] |
CHEN Peng, HOU Chao-huan, MA Xiao-chuan, et al. Adaptive broadband beamformer for nonuniform linear array based on second order cone programming[J]. Journal of Systems Engineering and Electronics. 2009, 20(2): 278−282.
|
[6] |
DUAN Huiping, NGA B P, SEEB C M S, et al. Applications of the SRV constraint in broadband pattern synthesis[J]. Journal of Signal Processing, 2008, 88(4): 1035−1045.
|
[7] |
CHEN Peng, LIANG Yi-hui, HOU Chao-huan, et al. SRV constraint based FIB design for wideband linear array[J]. Journal of Systems Engineering and Electronics, 2010, 21(6): 941−947.
|
[8] |
王华奎, 王二庆. 基于二阶锥规划的平面阵近场等旁瓣波束优化[J]. 舰船科学技术, 2012, 34(10): 73−76. WANG Hua-kui, WANG Er-qing. Isosidelobe optimization of planar rectangular array based on second cone programming algorithm[J]. Ship Science and Technology, 2012, 34(1): 121−124. |
[9] |
丛雯珊, 余岚, 杜鹏飞, 等. 基于粒子群算法的宽带真延时平面阵列方向图综合[J]. 国防科技大学学报, 2020, 42(5): 31−36. CONG Wen-shan, YU Lan, DU Peng-fei, et al. Planar array pattern synthesis of wideband real time delay based on particle swarm optimization algorithm[J]. Journal of National University of Defense Technology, 2020, 42(5): 31−36. |