﻿ 基于模糊控制理论的舱室通风散热系统设计
 舰船科学技术  2022, Vol. 44 Issue (19): 114-117    DOI: 10.3404/j.issn.1672-7649.2022.19.022 PDF

Design of cabin ventilation and heat dissipation system based on fuzzy control theory
WANG Yu-jiao
Jiangsu Maritime Institute, Nanjing 211199, China
Abstract: The air quality and temperature in the cabin will not only affect the life quality of the crew, but also have a negative impact on the cargo and operating components in the cabin. In order to ensure the cabin temperature and air volume control level, the cabin ventilation and heat dissipation system based on fuzzy control theory is optimized. According to the heating principle of components in the cabin and the mechanism of air circulation, the mathematical model of cabin heat dissipation is built. Install temperature sensors, ventilators, refrigerators and other actuators in the cabin environment, and calculate the ventilation and heat dissipation of the cabin according to the environmental parameters collected by the sensors. The cabin ventilation and heat dissipation fuzzy controller is refitted. With the support of fuzzy control theory, the cabin ventilation and heat dissipation control command is generated. The ventilation and heat dissipation function of the cabin is realized through the drive of the ventilation and heat dissipation actuator. The design system is applied to the actual cabin environment. Compared with the traditional system, the error generated by the optimized design system in ventilation volume is reduced by 3.92 cmm, and the air density control error is reduced by 0.005 5 kg/m3, The cabin temperature can be controlled closer to the target value.
Key words: fuzzy control theory     cabin ventilation     ventilation and heat dissipation system     target value
0 引　言

1 舱室通风散热系统设计

1.1 构建舱室散热数学模型

 图 1 舱室散热数学模型 Fig. 1 Mathematical model of cabin heat dissipation
1.2 装设舱室传感器与通风散热执行器

 图 2 舱室传感器与通风散热执行器连接图 Fig. 2 Connection between cabin sensor and ventilation and heat dissipation actuator
1.3 计算舱室通风量与散热量

 $\Delta E = \frac{{{T_{{\text{target}}}} - {T_{{\text{cabin}}}}}}{{{S_{{\text{cabin}}}}\left( {{H_2} - {H_1}} \right)}} 。$ (1)

 $\Delta Q = \frac{{3.6{Q_{{\text{cabin}}}}}}{{{\rho _{air}}c\left( {{T_{{\text{Return}}}} - {T_{{\text{supply}}}}} \right)}} 。$ (2)

1.4 改装舱室通风散热模糊控制器

 图 3 舱室通风散热模糊控制器结构图 Fig. 3 Structural diagram of cabin ventilation and heat dissipation fuzzy controller
1.5 利用模糊控制理论生成舱室通风散热控制指令

 \begin{aligned}\begin{cases} {{K_p} = {K_{p0}} + \Delta {K_p}}，\\ {{K_i} = {K_{i0}} + \Delta {K_i}} ，\\ {{K_d} = {K_{d0}} + \Delta {K_d}} 。\end{cases}\end{aligned} (3)

 $y(t) = {K_p}\left[ {\Delta Q + \frac{1}{{{t_i}}}\int_0^t {\Delta Q} {\rm{d}}t + \Delta {t_i}\frac{{{\rm{d}}\Delta Q}}{{{\rm{d}}t}}} \right]。$ (4)

1.6 实现舱室通风散热功能

 ${Q_f} = {P_{{\text{Fan}}}} \cdot {\omega _{{\text{Fan}}}} \cdot L_{{\text{blade}}}^2 。$ (5)

2 系统的性能测试与分析 2.1 配置舱室测试环境

2.2 设置舱室初始环境参数与控制目标

 图 4 机舱初始温度分布图 Fig. 4 Initial temperature distribution of engine room

2.3 系统测试过程与结果分析

2.4 舱室散热效果测试

 图 5 舱室散热效果测试对比结果 Fig. 5 Comparison results of cabin heat dissipation effect test
3 结　语

 [1] 张驰宇, 未永, 白建国. 封闭腔体通风散热系统仿真分析[J]. 真空科学与技术学报, 2020, 40(9): 813-817. Zhang Chiyu, Wei Yong, Bai Jianguo. Simulation Analysis of Ventilation and Heat Dissipation System of Closed Chamber[J]. Journal of Vacuum Science and Technology, 2020, 40(9): 813-817. DOI:10.13922/j.cnki.cjovst.2020.09.03 [2] 曹晏飞, 季李一珂, 王庭庭, 等. 基于GPRS技术的日光温室多段式自动通风控制系统设计[J]. 北方园艺, 2020(12): 70-75. Cao Yanfei, Ji Li Yike, Wang Tingting, et al. Design of Multi section Automatic Ventilation Control System for Solar Greenhouse Based on GPRS Technology[J]. Northern Horticulture, 2020(12): 70-75. [3] 邵嘉兴, 张世勇, 翟宇昕, 等. 北京新机场线通风空调智能化控制系统设计[J]. 都市快轨交通, 2020, 33(6): 139-145. Shao Jiaxing, Zhang Shiyong, Zhai Yuxin, et al. Design of Intelligent Control System for Ventilation and Air Conditioning of Beijing New Airport Line[J]. Urban Rapid Transit, 2020, 33(6): 139-145. DOI:10.3969/j.issn.1672-6073.2020.06.022 [4] 曹瑞红, 李晋蒲, 赵建贵, 等. 日光温室卷帘及通风口控制系统研制[J]. 江苏农业科学, 2020, 48(5): 219-226. Cao Ruihong, Li Jinpu, Zhao Jiangui, et al. Development of control system for rolling shutters and vents of solar greenhouse[J]. Jiangsu Agricultural Science, 2020, 48(5): 219-226. DOI:10.15889/j.issn.1002-1302.2020.05.045 [5] 冉均均, 袁磊. 基于模糊PID的矿井不停风倒机通风系统设计[J]. 煤炭技术, 2022, 41(7): 188-190. Ran Junjun, Yuan Lei. Design of mine non-stop fan reversing ventilation system based on fuzzy PID[J]. Coal Technology, 2022, 41(7): 188-190. [6] 杨勇, 张新桥, 陈艺琳, 等. 机舱无风管诱导通风系统优化设计[J]. 船舶工程, 2021, 43(S1): 255−258. Yang Yong, Zhang Xinqiao, Chen Yilin, et al. Optimization design of ductless induction ventilation system in engine room [J] Ship Engineering, 2021, 43 (S1): 255−258