﻿ 船舶柴油机轴承损坏程序评估系统设计
 舰船科学技术  2022, Vol. 44 Issue (19): 106-109    DOI: 10.3404/j.issn.1672-7649.2022.19.020 PDF

1. 江苏海事职业技术学院，江苏 南京 211170;
2. 中国船级社实业有限公司大连分公司，辽宁 大连 116001

Design of marine diesel engine bearing damage program evaluation system
SUN Chang-fei1, RAN Xue-feng2, HUI Jie1, LIU Zhao-liang1
1. Jiangsu Maritime Institute, Nanjing 211170, China;
2. China Classification Society Industrial Corp. Dalian Branch, Dalian 116001, China
Abstract: The diesel engine has the advantages of high reliability, large power, low cost, etc., and is widely used in the marine power system. The working process of the diesel engine is very complex, which is a comprehensive process of aerodynamics, thermodynamics, chemistry and other disciplines. At the same time, because of the high requirements for the types and assembly accuracy of the internal structural parts of the diesel engine, and the harsh offshore operating environment, it is of great significance to study the reliability of the diesel engine. The key components of diesel engine include crankshaft, bearing, cylinder, etc. bearing, as the main load bearing component, is the key component of diesel power system. The research direction of this paper is to analyze the dynamic characteristics of diesel engine bearings, establish an online bearing damage assessment and monitoring system for marine diesel engines, and improve the reliability of marine diesel engines.
Key words: diesel engine     bearing     reliability     online evaluation system
0 引　言

1 舰船柴油机轴承结构及动力学特性评估

 图 1 船舶柴油机轴承的示意图 Fig. 1 Schematic diagram of marine diesel engine bearings

1）曲轴弯矩

 ${M_0} - {M_1} = \frac{\text{π} }{{30}}{J_0}\frac{{{\rm{d}}n}}{{{\rm{d}}t}} \text{。}$

 ${T_{{\text{bearA}}}} = \frac{{{M_0}g}}{{{H_g}{n_0}2\text{π} }} \text{。}$

2）气缸作用力和力矩

 图 2 柴油机气缸曲柄滑块的数学模型 Fig. 2 Mathematical model of crank slider of diesel engine cylinder

 $s = (r + l) - r \cdot \cos (\alpha ) - \sqrt {{l^2} - {r^2}{{\sin }^2}(\alpha )} \text{，}$

 $\begin{gathered} V = \frac{{\text{π} {d^2}}}{4} \cdot s，\\ r = \frac{d}{2} 。\\ \end{gathered}$

 ${V_1} = \frac{{\text{π} {d^2}}}{4} \cdot {s_1} \text{，}$

 ${p_1}{V_1} = {m_1}{R_g}T \text{，}$

 ${F_{{\text{bear}}}} = m\int_{{V_1}}^{{V_2}} p {\rm{d}}V = m \cdot \frac{{{p_1}}}{{1 - k}}\left( {V_1^kV_2^{1 - k} - {V_1}} \right) 。$

 ${T}_{bearB}\text={F}_{\text{bear}}s\left(\text{sin}\theta +\frac{\lambda \mathrm{sin}2\theta }{2\sqrt{1-{\lambda }^{2}{\mathrm{sin}}^{2}{\theta }}}\right) 。$

 图 3 柴油机主轴承的受力分析示意图 Fig. 3 Stress analysis diagram of diesel engine main bearing

 $\begin{gathered} {M_{all}} = \sum\limits_{i = 1}^n {\left( {{T_i}/2 \cdot \sin \alpha - \left( {{T_i}/2} \right) \cdot \cos \alpha } \right)} ，\\ {{\vec F}_{all}} = \sum\limits_{i = 1}^n {{F_i}} 。\\ \end{gathered}$

2 船舶柴油机轴承损坏程序评估系统的设计开发 2.1 柴油机轴承损坏评估系统的整体设计

1）硬件层

2）中间层

3）软件层

 图 4 船舶柴油机轴承损坏评估和监测系统原理图 Fig. 4 Schematic diagram of marine diesel engine bearing damage assessment and monitoring system
2.2 柴油机轴承损坏评估系统的软件设计

 图 5 柴油机轴承振动信号处理流程图 Fig. 5 Flow chart of diesel engine bearing vibration signal processing

l）振动信号采集

2）信号编译

3）轴承的状态评估和结果输出

 图 6 载荷下的柴油机轴承内外圈偏心率 Fig. 6 Eccentricity of inner and outer rings of diesel engine bearing under load
3 结　语

 [1] 李方玉, 胡以怀, 王欣, 陈彦臻. 进气氧浓度和EGR对船用柴油机排放特性影响研究[J]. 舰船科学技术, 2020, 42(15): 127-133. LI Fang-yu, HU Yi-huai, WANG Xin, CHEN Yan-zhen. Study on the influence of intake oxygen concentration and EGR on the emission characteristics of marine two-stroke diesel engine[J]. Marine science and technology, 2020, 42(15): 127-133. [2] 胡以怀, 方云虎. 二冲程柴油机机座表面振动信号的特征分析[J]. 柴油机, 2020, 42(1): 37-40. HU Yi-huai, FANG Yun-hu. Characteristic analysis of vibration signal on the base surface of two-stroke diesel engine[J]. Diesel engine, 2020, 42(1): 37-40. DOI:10.3969/j.issn.1001-4357.2020.01.008 [3] 胡以怀, 张陈. 船用二冲程柴油机缸体上部振动信号的特征分析[J]. 机电设备, 2019, 36(5): 6-11. HU Yi-huai, ZHANG Chen. Characteristic analysis of vibration signal on the upper part of cylinder block of marine two-stroke diesel engine[J]. Electromechanical equipment, 2019, 36(5): 6-11. DOI:10.16443/j.cnki.31-1420.2019.05.002