﻿ 船用发电机排气消声器声学计算与试验研究
 舰船科学技术  2022, Vol. 44 Issue (19): 102-105    DOI: 10.3404/j.issn.1672-7649.2022.19.019 PDF

Acoustic calculation and experimental study of marine generator exhaust muffler
HUANG Wei-xi, CHEN Wen-hua, LIANG Yun
National Key Laboratory on Ship Vibration and Noise, China Ship Scientific Research Center, Wuxi 214082, China
Abstract: The exhaust noise of ship main engine radiates outward through the exhaust pipeline and exhaust port, which is an important noise source affecting the noise of ship open area and adjacent cabins. Exhaust muffler is a common means of exhaust noise control. Improving the silencing performance of muffler on the basis of limited resistance loss is an important research topic. In this paper, the acoustic and flow field simulation calculation of a marine exhaust muffler is carried out by using the finite element method, and the test is completed. The calculation is in good agreement with the test results, which can provide a reference for the design optimization of exhaust muffler and the noise control of exhaust system.
Key words: exhaust muffler     insertion loss     resistance loss     test
0 引　言

1 排气消声器结构模型与参数

 图 1 消声器实体模型 Fig. 1 Model of the muffler

 图 2 消声器计算域模型 Fig. 2 Calculation domain model of the muffler
2 消声器声学与流体性能计算分析 2.1 声学计算

 图 3 消声器内部声场分布（125 Hz） Fig. 3 Distribution of sound field inside the muffler (125 Hz)

 图 4 消声器内部声场分布（250 Hz） Fig. 4 Distribution of sound field inside the muffler (250 Hz)

 图 5 消声器内部声场分布（2000 Hz） Fig. 5 Distribution of sound field inside the muffler (2000 Hz)
2.2 流场计算

 图 6 消声器内部速度矢量分布 Fig. 6 Velocity vector distribution inside the muffler

 图 7 消声器内部流速分布（5 m/s） Fig. 7 velocity distribution inside the muffler (5 m/s)

 图 8 消声器内部流速分布（20 m/s） Fig. 8 Velocity distribution inside the muffler (20 m/s)

 图 9 消声器内部流速分布（40 m/s） Fig. 9 Velocity distribution inside the muffler (40 m/s)
3 试验测试

 图 10 消声器测试系统示意图 Fig. 10 Schematic diagram of the muffler test system

1）插入损失测试

 $TL = \overline {{L_{p1}}} - \overline {{L_{p2}}}。$ (1)

2）阻力损失测试

 $\Delta {p_t} = {p_{t1}} - {p_{t2}} = \Delta {p_s} + \frac{{\rho {v^2}}}{2}\left[ {1 - {{\left( {\frac{{{S_1}}}{{{S_2}}}} \right)}^2}} \right]。$ (2)

 图 11 消声器测试现场 Fig. 11 The test site of muffler

 图 12 传声器测点布置 Fig. 12 Layout of microphone measuring points
4 计算与试验结果对比

 图 13 消声器插入损失计算与试验结果对比 Fig. 13 Comparison between the calculation and test results of the muffler insertion loss

 图 14 消声器阻力损失计算与试验结果对比 Fig. 14 Comparison between calculation and test results of the muffler resistance loss
5 结　语

 [1] MUNJAL M L. Acoustics of ducts and mufflers[M]. New York: Wiley-Interscience, 1987. [2] 季振林. 消声器声学理论与设计[M]. 北京: 科学出版社, 2015. [3] 苏胜利. 自调节双模式排气消声器声学与流场特性研究[D]. 哈尔滨: 哈尔滨工程大学, 2008. [4] 王雪仁. 船用柴油机排气消声器声学性能预测的边界元法及实验研究[D]. 哈尔滨: 哈尔滨工程大学, 2009. [5] 王世华. 船用柴油机进排气消声器声学性能计算的有限元法[D]. 哈尔滨: 哈尔滨工程大学, 2017. [6] 李赫. 船用柴油机排气消声器的声学特性计算及试验验证[J]. 船舶工程, 2017, 39(8): 40-42+51. DOI:10.13788/j.cnki.cbgc.2017.08.040 [7] 何万国. 船用排气消音器声学及气动性能研究[J]. 船舶工程, 2011, 33(2): 79-81. DOI:10.13788/j.cnki.cbgc.2011.s2.041