﻿ 基于粒子群算法的潜艇声诱饵防御声自导鱼雷研究
 舰船科学技术  2022, Vol. 44 Issue (18): 185-189    DOI: 10.3404/j.issn.1672-7649.2022.18.039 PDF

Research on PSO algorithm of defending acoustic homing torpedo by self-propelled acoustic decoy of submarine
HOU Wen-shu, LU Ming-hua
Naval Submarine Academy, Qingdao 266199, China
Abstract: In order to defend S maneuver acoustic homing torpedo by single mobile acoustic decoy used by submarine, a 3D model was established and parallel PSO algorithm was used to solve this optimize problem. The simulation results showed that the feasible solution was proposed by the algorithm, and the results were using to analyse the influence of parameter on the simulation model, and then on the simulation results, in addition to summarize the rule for the commander training.
Key words: self-propelled acoustic decoy     torpedo defense     parallel PSO algorithm
0 引　言

1 模型建立 1.1 仿真模型

 图 1 潜艇声诱饵防御鱼雷仿真流程 Fig. 1 Flow diagram of defending torpedo by acoustic decoy of submarine

1）机动假设

2）声学假设

1.2 数学模型

 $\begin{array}{*{20}{l}} {\max }&{d = f({t_1},{\alpha _1},{z_1},{t_2},{\alpha _2},{z_2},{\alpha _3})} \\ {{\rm{s.t.}}}& 0 \leqslant {t_i} \leqslant {t_{end}} \\ {}& - 180 \leqslant {\alpha _1} \leqslant 180 \\ {}& - 90 \leqslant {\alpha _j} \leqslant 90,j = 2,3 \\ {}& 10 \leqslant {z_i} \leqslant 300 \\ {}&{t_i},{z_i},{\alpha _k} \in Z,i = 1,2,k = 1,2,3 \text{。} \end{array}$ (1)

2 并行计算的粒子群算法设计

 图 2 基于并行计算的粒子群算法流程 Fig. 2 Flow diagram of PSO algorithm based on parallel computation

 $V_i^{k + 1} = V_i^k + {c_1}{r_1}\left( {P_{ig}^k - P_i^k} \right) + {c_2}{r_2}\left( {P_{gbest}^k - P_i^k} \right)\text{，}$ (2)
 $P_i^{k + 1} = P_i^k + V_i^{k + 1} \text{。}$ (3)

3 仿真计算结果

 图 3 潜艇声诱饵防御鱼雷仿真轨迹 Fig. 3 Simulation track of defending torpedo by acoustic decoy of submarine

 图 4 群体极值的适应度值 Fig. 4 Fitness of global best

 图 5 每个粒子个体极值的适应度值 Fig. 5 Fitness of personal best of each particle

 图 6 前10个粒子适应度值随声诱饵变深航深变化情况 Fig. 6 The fitness of the first 10 particle changed with navigable depth of acoustic decoy

 图 7 第1个粒子变深航深为11 m 时仿真轨迹 Fig. 7 Simulation track of the first particle which navigable depth of acoustic decoy was 11 m

4 结　语

 [1] 李长军, 王顺意. 潜射自航式声诱饵发射时机与初始航向模型[J]. 鱼雷技术, 2010, 18(6): 471-475. [2] 林宗祥, 周明, 门金柱. 一种求解自航式声诱饵航向的方法[J]. 舰船科学技术, 2008, 30(6): 167-168. LIN Z X, ZHOU M, MEN J Z. A method of calculating the course of mobile acoustic decoy[J]. Ship Science and Technology, 2008, 30(6): 167-168. DOI:10.3404/j.issn.1672-7649.2008.06.037 [3] 于李洋, 袁志勇. 潜艇自航式声诱饵的使用时机研究[J]. 鱼雷技术, 2006, 14(4): 59-61. [4] 侯琳, 胡波, 章桂永. 潜艇自航式声诱饵发射方向的仿真研究[J]. 计算机仿真, 2009, 26(6): 23-25. HOU L, HU B, ZHANG G Y. Simulation of launching direction of swim-out acoustic decoy for submarine[J]. Computer Simulation, 2009, 26(6): 23-25. DOI:10.3969/j.issn.1006-9348.2009.06.006 [5] 程健, 张会. 潜艇使用声抗器材防御鱼雷方案优化模型及模型求解策略[J]. 指挥控制与仿真, 2019, 41(6): 48-51. DOI:10.3969/j.issn.1673-3819.2019.06.009 [6] 李雯, 迟利华, 张会, 等. 潜艇使用自航式声诱饵防御鱼雷模型并行计算方法研究[J]. 计算机工程与科学, 2020, 42(12): 2163-2168. LI W. CHI L H, ZHANG H, et al. Research on the parallel computing method of submarine's torpedo defense model with self-propelled acoustic decoy[J]. Computer Engineering & Science, 2020, 42(12): 2163-2168. DOI:10.3969/j.issn.1007-130X.2020.12.008 [7] 陈迎春, 吴碧, 蔡旭东. 自航式声诱饵对抗声自导鱼雷的策略[J]. 舰船科学技术, 2012, 34(6): 83-86. CHEN Y C, WU B, CAI X D. Optimal strategy for swim-out acoustic decoy to countermeasure torpedo[J]. Ship Science and Technology, 2012, 34(6): 83-86. DOI:10.3404/j.issn.1672-7649.2012.06.020 [8] 彭会斌. 基于遗传算法的潜艇组合使用声诱饵防御鱼雷技术研究[J]. 指挥控制与仿真, 2018, 40(1): 52-55. DOI:10.3969/j.issn.1673-3819.2018.01.010 [9] 高学强, 杨日杰. 运用遗传算法的反鱼雷对抗优化方案研究[J]. 哈尔滨:哈尔滨工程大学学报, 2010, 31(10): 1286-1292. [10] 孟庆玉, 张静远, 宋保维. 鱼雷作战效能分析[M]. 北京: 国防工业出版社. 2003: 131−162. [11] 刘伯胜, 黄益旺, 陈文剑, 等. 水声学原理(第三版)[M]. 北京: 科学出版社. 2019: 121−137. [12] 史峰, 王辉, 郁磊, 等. MATLAB智能算法30个案例分析[M]. 北京: 北京航空航天大学出版社, 2011: 131−136.